Load Balancing for Spatial-Grid-Based Parallel Numeric Simulations on Clusters of SMPs - A Case Study from an Industrial CFD Simulation

Author(s):  
Huaien Gao ◽  
Andreas Schmidt ◽  
Amitava Gupta ◽  
Peter Luksch ◽  
Gerhard Kahl
2021 ◽  
Vol 11 (15) ◽  
pp. 7169
Author(s):  
Mohamed Allouche ◽  
Tarek Frikha ◽  
Mihai Mitrea ◽  
Gérard Memmi ◽  
Faten Chaabane

To bridge the current gap between the Blockchain expectancies and their intensive computation constraints, the present paper advances a lightweight processing solution, based on a load-balancing architecture, compatible with the lightweight/embedding processing paradigms. In this way, the execution of complex operations is securely delegated to an off-chain general-purpose computing machine while the intimate Blockchain operations are kept on-chain. The illustrations correspond to an on-chain Tezos configuration and to a multiprocessor ARM embedded platform (integrated into a Raspberry Pi). The performances are assessed in terms of security, execution time, and CPU consumption when achieving a visual document fingerprint task. It is thus demonstrated that the advanced solution makes it possible for a computing intensive application to be deployed under severely constrained computation and memory resources, as set by a Raspberry Pi 3. The experimental results show that up to nine Tezos nodes can be deployed on a single Raspberry Pi 3 and that the limitation is not derived from the memory but from the computation resources. The execution time with a limited number of fingerprints is 40% higher than using a classical PC solution (value computed with 95% relative error lower than 5%).


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2019 ◽  
Vol 9 (2) ◽  
pp. 1-16
Author(s):  
Vannak Vai ◽  
Marie-Cécile Alvarez-Hérault ◽  
Long Bun ◽  
Bertrand Raison

This paper studies an optimal design of grid topology and integrated photovoltaic (PV) and centralized battery energy storage considering techno-economic aspect in low voltage distribution systems for urban area in Cambodia. This work aims at searching for an optimal topology including size of the battery energy storage by two different methods over the planning study of 15 years. Firstly, the shortest path algorithm (SPA) and first-fit bin-packing algorithm (FFBPA) are used to find out the topology which minimize the line and the load balancing. Secondly, mixed integer quadratically constrained programming (MIQCP) algorithms are developed to search for a topology which minimize conductor use and the load balancing improvement. Next, Genetic algorithm is developed to size the maximum PV peak power connected into LV network with respected to voltage and current constraints. Then, the size of battery energy storage procedure is established in order to eliminate the reverse power flow going on medium voltage (MV) grid and to improve the autonomous operation time of system. A discounted cost method is used to evaluate the solutions for different methods. Lastly, an urban area in Cambodia is chosen as a case study in this paper. Simulation results confirm the proposed method in this research.


Author(s):  
Zaidoon W. J. Al-Shammari ◽  
Safaa Kother ◽  
Ihsan Ahmed Taha ◽  
H. Enawi Hayder ◽  
M. Almukhtar Hussam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document