A Study on the Performance of Stratified Air Conditioning Design in Assembly Halls – A Case Study at the Dazhi Cultural Center in Taiwan

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.

2019 ◽  
Vol 13 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Anirban Banik ◽  
Tarun Kanti Bandyopadhyay ◽  
Sushant Kumar Biswal

Background: Membrane filtration process produced good quality of permeate flux due to which it is used in different industries like dairy, pharmaceutical, sugar, starch and sweetener industry, bioseparation, purification of biomedical materials, and downstream polishing etc. The cross-flow mode of operation has also been used to improve the quality of the Rubber Industrial effluent of Tripura, India. </P><P> Method: The Computational Fluid Dynamics (CFD) simulation of the cross-flow membrane is done by using ANSYS Fluent 6.3. The meshing of the geometry of the membrane is done by Gambit 2.4.6 and a grid size of 100674, the number of faces is 151651 and number of nodes being 50978 has been selected for the simulation purpose from the grid independence test. We have revised and included all patents in the manuscripts related to the membrane filtration unit. </P><P> Results: Single phase Pressure-Velocity coupled Simple Algorithm and laminar model is used for the simulation of the developed model and Fluent 6.3 used for the prediction of pressure, pressure drop, flow phenomena, wall shear stress and shear strain rate inside the module is studied for cross flow membrane. </P><P> Conclusion: From the study, it has been found that CFD simulated results hold good agreement with the experimental values.


2021 ◽  
Vol 48 (2) ◽  
pp. 121-130
Author(s):  
Lestari Lestari ◽  
Syaiful Muazir

Type 36 houses are built for people who have low income. Because of this, the buildings’ ventilation relies on natural airflow. One of the variables that affects natural ventilation is airflow. Airflow can affect the quality of indoor air, influencing the comfort and health of those within. This study aims to evaluate the designs of type 36 buildings from the perspective of the airflow through the unit. It uses computational fluid dynamics simulations to compare the pattern and velocity of airflow in each building design. There are six designs of type 36 house that have different layouts and placements of air vents. The results of the simulation and analysis show that rooms arranged in a way that allows for the placement of vents that were facing each other, even if they were in different rooms, generated continuous airflow without experiencing turbulence.


Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 1880-1883
Author(s):  
Li Ping Xiang

A numerical model to improve the air-conditioning system of vehicle cabin taking into the cabin air moisture and its transport by the airflow within the enclosure cabin is described. An efficient computational fluid dynamics(CFD) technique is using the “realisable” model. The temperature and humidity fields in the passenger cabin are investigated individually under having or no body moisture. The temperature in the vehicle cabin taking into account human moisture is lower than no taking into account moisture 0.5 °C. The human dispersing moisture effect significantly on the humidity, which lead to the humidity is elevating and the humidity in vehicle cabin is corresponded hygienic standard.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


Sign in / Sign up

Export Citation Format

Share Document