Static High Magnetic Fields and Materials Science

Author(s):  
M. Motokawa ◽  
K. Watanabe ◽  
F. Herlach
MRS Bulletin ◽  
1992 ◽  
Vol 17 (8) ◽  
pp. 45-51 ◽  
Author(s):  
Eric E. Hellstrom

High-temperature superconductors are brittle oxide ceramics, yet they have been made into wire that has been wrapped into solenoids and used in demonstration magnets and motors. Fabricating wires from these ceramics is an extremely challenging materials science process that requires a precisely engineered microstructure with the correct chemical, mechanical, and electromagnetic properties if these wires are to transport large current densities (Jc) in high magnetic fields. Heine et al. first demonstrated that wires of these materials could carry high Jc in very high magnetic fields. At 4.2 K, the oxide superconducting wires can carry higher Jc at higher magnetic fields than conventional Nb-Ti or Nb3Sn wires (Figure 1), and as shown in the companion article in this issue by Kato et al. they can also have high Jc at 77 K.Of the three major families of high-temperature superconductors, YBa2Cu3O7-x, Bi-Sr-Ca-Cu-O (BSCCO), and Tl-Ba-Ca-Cu-O, the best wires to date have been made in the BSCCO system. At present, all YBa2Cu3O7-x wires are weak linked and have only small Jc in magnetic fields. In the Tl-based system, the superconducting properties are potentially very interesting, but the toxicity of Tl and the system's complex processing have limited conductor development. For the Bi-based system, the basic processing steps are becoming known, the grains are well connected, and the weak link problem can be controlled. This permits applications in the temperature range 4–77 K, depending on the field and current density requirements of the particular use.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (8) ◽  
pp. 17-21 ◽  
Author(s):  
J.E. Crow ◽  
D.M. Parkin ◽  
N.S. Sullivan

The recent rapid growth in the emerging areas of magnetic and magnet-related materials research and applications has led to worldwide recognition of the increased importance of research and technology using high magnetic fields. New high-field magnet facilities and major upgrades of existing facilities are being planned and implemented by a number of countries, among them Japan, Germany, France, the Netherlands, Belgium, Great Britain, Poland, Australia, and the United States. Over the next ten years, these developments will advance the state of the art in magnet-related materials science and technologies by a significant quantum jump. Support by many of the national agencies and a strong corporate commitment to stimulate rapid growth in the development of capabilities at higher magnetic fields and in related technologies results in part from an awareness of the impact these technologies will have in developing the new emerging industrial technologies of the 21st century.The Francis Bitter National Magnet Laboratory (FBNML) at the Massachusetts Institute of Technology has been one of the pre-eminent facilities in developing and advancing science and technology in high magnetic fields. The new U.S. National High Magnetic Field Laboratory (NHMFL) at Florida State University, at the University of Florida, and at Los Alamos National Laboratory builds on the success of existing facilities. NHMFL will provide the necessary environment to develop the next generation of high magnetic fields: 30–50-tesla continuous fields, 60-tesla quasi-continuous fields, and pulsed fields from 60–1,000 tesla. The ability to develop broad user capabilities at these extreme fields is crucial for the advancement of the frontiers of science and of magnet-related industries.


1984 ◽  
Vol 45 (C1) ◽  
pp. C1-67-C1-70 ◽  
Author(s):  
F. Sultanem ◽  
C. A. Bleijs ◽  
C. Postel ◽  
S. Askenazy ◽  
J. Marquez

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 139-145
Author(s):  
V. K. Pecharsky ◽  
Ya. Mudryk ◽  
K. A. Gschneidner

Sign in / Sign up

Export Citation Format

Share Document