magnetic states
Recently Published Documents


TOTAL DOCUMENTS

651
(FIVE YEARS 117)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 64 (2) ◽  
pp. 277
Author(s):  
С.Ю. Давыдов

Model of C – AB – D Janus structure as the compound formed by the interacting through atoms А and В dimers А – С and В – D, where А and В atoms are in the sites of two-dimensional hexagonal lattice and C and D atoms are on the opposite sides from AB list is proposed. In the scope of tight-binding theory and Green’s function method general equation for the dispersion low is obtained. The particular cases of C – AА – D и А – AB – В compounds are considered and analytical expressions for their electronic spectra is fulfilled. The effect of the external mechanical deformation on the band parameters including effective masses is examined. Problem of the magnetic states in Janus compounds is discussed.


2022 ◽  
Vol 64 (1) ◽  
pp. 79
Author(s):  
В.Ф. Гильмутдинов ◽  
М.А. Тимиргазин ◽  
А.К. Аржников

The magnetic phase diagrams of the two-dimensional Hubbard model for isotropic and anisotropic triangular lattices are constructed within the Hartree-Fock and slave boson approximations. The triangular lattice specific non-collinear and spiral magnetic states, as well as phase separation between them, are shown to be realized in a wide range of model parameters along with collinear magnetic states (stripe antiferromagnetic and ferromagnetic). Phase transitions of the first and second order are found, and the boundaries of the phase separation regions are determined. A comparison of the two approximations, Hartree-Fock and slave boson, shows that electronic correlations suppress magnetic states, the region of paramagnetism being expand, for values U/t>5. At the same time, when the Fermi level is near the van Hove singularity, electron correlations do not change the diagrams qualitatively, which is consistent with the previously obtained result for square and cubic lattices. The results are compared with the data available in the literature for other methods and approaches.


Author(s):  
Junyao Li ◽  
Xiaofeng Liu ◽  
Lingyun Wan ◽  
Xinming Qin ◽  
Wei Hu ◽  
...  

Abstract Graphene quantum dots (GQDs) exhibit abundant magnetic edge states with promising applications in spintronics. Hexagonal zigzag GQDs possess a ground state with an antiferromagnetic (AFM) inter-edge coupling, followed by a metastable state with ferromagnetic (FM) inter-edge coupling. By analyzing the Hubbard model and performing large-scale spin-polarized density functional theory calculations containing thousands of atoms, we predict a series of new mixed magnetic edge states of GQDs arising from the size effect, namely mix-n, where n is the number of spin arrangement parts at each edge, with parallel spin in the same part and anti-parallel spin between adjacent parts. In particular, we demonstrate that the mix-2 state of bare GQDs (C6N2) appears when N ≥ 4 and the mix-3 state appears when N ≥ 6, where N is the number of six-membered-ring at each edge, while the mix-2 and mix-3 magnetic states appear in the hydrogenated GQDs with N = 13 and N = 15, respectively.


2021 ◽  
Vol 104 (17) ◽  
Author(s):  
Zhen Zhang ◽  
Jing-Yang You ◽  
Bo Gu ◽  
Gang Su

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Javad Vahedi ◽  
Robert Peters ◽  
Ahmed Missaoui ◽  
Andreas Honecker ◽  
Guy Trambly de Laissardière

We investigate magnetic instabilities in charge-neutral twisted bilayer graphene close to so-called ``magic angles’’ using a combination of real-space Hartree-Fock and dynamical mean-field theories. In view of the large size of the unit cell close to magic angles, we examine a previously proposed rescaling that permits to mimic the same underlying flat minibands at larger twist angles. We find that localized magnetic states emerge for values of the Coulomb interaction UU that are significantly smaller than what would be required to render an isolated layer antiferromagnetic. However, this effect is overestimated in the rescaled system, hinting at a complex interplay of flatness of the minibands close to the Fermi level and the spatial extent of the corresponding localized states. Our findings shed new light on perspectives for experimental realization of magnetic states in charge-neutral twisted bilayer graphene.


2021 ◽  
Vol 118 (40) ◽  
pp. e2023337118
Author(s):  
Kai Du ◽  
Fei-Ting Huang ◽  
Jaewook Kim ◽  
Seong Joon Lim ◽  
Kasun Gamage ◽  
...  

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.


2021 ◽  
Author(s):  
Yogendra Limbu ◽  
Gopi Chandra Kaphle ◽  
Alok Lal Karn ◽  
Niraj Kumar Shah ◽  
Durga Paudyal

We unravel the evolution of structural, electronic, magnetic, and topological properties of graphene-like pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH) employing first-principles calculations. The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic in nature except for oxygen terminated one, which is 100% spin polarized half-metallic. Additionally, the bare MXene is nearly half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene possessing band inversion. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti2NH2. These properties are reversed in Ti2N, Ti2NF2, and Ti2N(OH)2. The half-metallic nature changes to semi-metallic under 1% compression and is completely destroyed under 2% compression. In single vacancy defect, the band structure of Ti2NO2 remarkably transforms from half-metallic to semi-conducting (with large band gap of 1.73 eV) in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and topological semi-metal in 12.5% oxygen. The 25% N defect changes the half-metallic to the metallic with certain topological features. Further, the 12.5% Co substitution in Ti2NO2 preserves the half-metallic character, whereas Mn substitution allows to convert half-metallic into weak semi-metallic preserving ferromagnetic character. However, Cr substitution converts half-metallic ferromagnetic to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and magnetic and topological phenomena in novel 2D MXenes open up their possibility in designing them for synthesis and thereby taking to applications.


Sign in / Sign up

Export Citation Format

Share Document