Biological Soil Crusts and Livestock in Arid Ecosystems: Are They Compatible?

Author(s):  
S. D. Warren ◽  
D. J. Eldridge
2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Abstract Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2010 ◽  
Vol 333 (1-2) ◽  
pp. 21-34 ◽  
Author(s):  
Andrea P. Castillo-Monroy ◽  
Fernando T. Maestre ◽  
Manuel Delgado-Baquerizo ◽  
Antonio Gallardo

2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Abstract Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2011 ◽  
Vol 75 (12) ◽  
pp. 1282-1291 ◽  
Author(s):  
F.T. Maestre ◽  
M.A. Bowker ◽  
Y. Cantón ◽  
A.P. Castillo-Monroy ◽  
J. Cortina ◽  
...  

2015 ◽  
Author(s):  
Charles Pepe-Ranney ◽  
Chantal Koechli ◽  
Ruth Potrafka ◽  
Cheryl Andam ◽  
Erin Eggleston ◽  
...  

Biological soil crusts (BSC) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria, however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing (DNA-SIP) with15N2revealed thatClostridiaceaeandProteobacteriaare the most common microorganisms that assimilate15N2in early successional crusts. TheClostridiaceaeidentified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% SSU rRNA gene sequence identity with isolates from genera known to possess diazotrophs (e.g.Pseudomonas,Klebsiella,Shigella, andIdeonella). The low abundance of these heterotrophic diazotrophs in BSC may explain why they have not been characterized previously. Diazotrophs play a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSC in arid ecosystems.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e01366-16 ◽  
Author(s):  
Ulas Karaoz ◽  
Estelle Couradeau ◽  
Ulisses Nunes da Rocha ◽  
Hsiao-Chien Lim ◽  
Trent Northen ◽  
...  

ABSTRACTBiological soil crusts (biocrusts) account for a substantial portion of primary production in dryland ecosystems. They successionally mature to deliver a suite of ecosystem services, such as carbon sequestration, water retention and nutrient cycling, and climate regulation. Biocrust assemblages are extremely well adapted to survive desiccation and to rapidly take advantage of the periodic precipitation events typical of arid ecosystems. Here we focus on the wetting response of incipient cyanobacterial crusts as they mature from “light” to “dark.” We sampled a cyanobacterial biocrust chronosequence before (dry) and temporally following a controlled wetting event and used high-throughput 16S rRNA and rRNA gene sequencing to monitor the dynamics of microbial response. Overall, shorter-term changes in phylogenetic beta diversity attributable to periodic wetting were as large as those attributable to biocrust successional stage. Notably, more mature crusts showed significantly higher resistance to precipitation disturbance. A large bloom of a few taxa within theFirmicutes, primarily in the orderBacillales, emerged 18 h after wetting, while filamentous crust-forming cyanobacteria showed variable responses to wet-up across the successional gradient, with populations collapsing in less-developed light crusts but increasing in later-successional-stage dark crusts. Overall, the consistentBacillalesbloom accompanied by the variable collapse of pioneer cyanobacteria of theOscillatorialesorder across the successional gradient suggests that the strong response of few organisms to a hydration pulse with the mortality of the autotroph might have important implications for carbon (C) balance in semiarid ecosystems.IMPORTANCEDesert biological soil crusts are terrestrial topsoil microbial communities common to arid regions that comprise 40% of Earth’s terrestrial surface. They successionally develop over years to decades to deliver a suite of ecosystem services of local and global significance. Ecosystem succession toward maturity has been associated with both resistance and resilience to disturbance. Recent work has shown that the impacts of both climate change and physical disturbance on biocrusts increase the potential for successional resetting. A larger proportion of biocrusts are expected to be at an early developmental stage, hence increasing susceptibility to changes in precipitation frequencies. Therefore, it is essential to characterize how biocrusts respond to wetting across early developmental stages. In this study, we document the wetting response of microbial communities from a biocrust chronosequence. Overall, our results suggest that the cumulative effects of altered precipitation frequencies on the stability of biocrusts will depend on biocrust maturity.


2017 ◽  
Author(s):  
Steven D. Warren ◽  
Larry L. St. Clair ◽  
Steven D. Leavitt

Abstract. Biological soil crusts (BSCs) commonly occupy the surface of many arid and semiarid soils, and disturbed soils in more mesic environments. BSCs perform many essential ecological services. Substantial resources have been invested trying to restore BSCs that have been damaged by anthropogenic disturbances, largely to no avail. The nexus of science related to crust restoration and to aerobiology strongly suggests that crusts can become reestablished via naturally occurring processes. Propagules of BSC organisms are found naturally in the atmosphere, and are transported long distances. Whether restoration occurs naturally in this way, or by costly attempts to produce and disseminate artificial inoculants, success is ultimately moderated and governed by the timing and frequency of adequate precipitation relative to the arrival of viable propagules on suitable substrate at an appropriate time of the year. For greatest ecological benefit, efforts should focus primarily on minimizing the scope and scale of anthropogenic disturbance of BSCs in arid ecosystems.


2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Aims: Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. Methods: We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Results: Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. Conclusions: This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2013 ◽  
Vol 5 (6) ◽  
pp. 739
Author(s):  
Wu YongSheng ◽  
Erdun Hasi ◽  
Yin RuiPing ◽  
Zhang Xin ◽  
Ren Jie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document