scholarly journals Biological soil crusts inhibit seed germination in a temperate pine barren ecosystem

Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Aims: Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. Methods: We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Results: Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. Conclusions: This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.

2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Abstract Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Abstract Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2018 ◽  
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

Aims - Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment, but the ecological role of BSCs in more mesic climates are not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. Methods - We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We tested total seed germination and the number of days to 50% of total germination (T50) of two herbaceous perennial forb species in each soil type. Results - Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. Conclusions - This study, and others in similar habitats, show that BSCs in mesic ecosystems can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.


2005 ◽  
Vol 63 (1) ◽  
pp. 344-352 ◽  
Author(s):  
V. Rivera-Aguilar ◽  
H. Godínez-Alvarez ◽  
I. Manuell-Cacheux ◽  
S. Rodríguez-Zaragoza

PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212466
Author(s):  
Jessica A. Gilbert ◽  
Jeffrey D. Corbin

2010 ◽  
Vol 333 (1-2) ◽  
pp. 21-34 ◽  
Author(s):  
Andrea P. Castillo-Monroy ◽  
Fernando T. Maestre ◽  
Manuel Delgado-Baquerizo ◽  
Antonio Gallardo

2019 ◽  
Vol 29 (3) ◽  
pp. 210-214 ◽  
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractHermaphroditic angiosperms, especially outcrossers, generally produce many more flowers and ovules than they can mature into fruits and seeds. One of the several hypotheses to account for the production of ‘excess’ flowers is selective abortion, which has been shown to increase offspring quality in plants. Our primary aim was to review the literature on the effects of selective abortion on seed germination and post-germination offspring vigour. Of 14 case studies (11 species in 10 genera and four families of flowering plants), germination percentage or rate (speed) increased in six and did not increase in eight, whereas post-germination offspring performance increased in 11 and did not increase in three. In six of the eight cases in which germination was not increased, seedling/juvenile vigour was increased. Seed mass was less likely to influence seed germination than seedling/juvenile vigour. Although selective abortion has been shown to increase progeny vigour of the early life history stages of plants, neither its demographic nor evolutionary importance has been demonstrated.


2011 ◽  
Vol 75 (12) ◽  
pp. 1282-1291 ◽  
Author(s):  
F.T. Maestre ◽  
M.A. Bowker ◽  
Y. Cantón ◽  
A.P. Castillo-Monroy ◽  
J. Cortina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document