A New Approach to the Localization of 3D Anatomical Point Landmarks in Medical Images Based on Deformable Models

Author(s):  
Sönke Frantz ◽  
Karl Rohr ◽  
H. Siegfried Stiehl
2020 ◽  
Vol 10 (6) ◽  
pp. 1288-1293
Author(s):  
K. N. Madhusudhan ◽  
P. Sakthivel

The image authentication is generally based on two different types of techniques: watermarking and digital signature. In watermarking methods, embedded watermarking is often imperceptible and it contains either a specific ID of producer or codes related to content that are used for authentication. Normally a separate file is stored, digital signature is a non-repudiation and encrypted version of the information extracted from the data. A digital signature can be attached to the data to prove the originality and integrity. The proposed work presents a new approach to steganography of medical images that uses modified Least Significant Bit (LSB) based on the Local Binary Pattern (LBP) pattern. As a first step, cover image has been divided as blocks of 3×3 non overlapping masks. Then, the pixel embedding position (clock wise or anti-clock wise) has to be identified using LBP operator. The value of the LBP operator determines how and where to embed secret image pixel. Later, using LSB method, pixel values will be embedded in the cover image pixel. In order to provide the integrity of the data, the proposed work also presents Reversible Watermarking (RW), a Digital Signature (DS) technique. The proposed algorithm of steganography experimented on few medical images and achieved better efficiency with respect to MSE and PSNR values and same is reported in this paper.


2001 ◽  
Author(s):  
Christopher L. Wyatt ◽  
Yaorong Ge ◽  
David J. Vining

Author(s):  
Leila Belhadef ◽  
Zoulikha Mekkakia Maaza

<p>Recent lossless 4D medical images compression works are based on the application of techniques originated from video compression to efficiently eliminate redundancies in different dimensions of image. In this context we present a new approach of lossless 4D medical images compression which consists to application of 2D wavelet transform in spatial directions followed or not by either lifting transform or motion compensation in inter slices direction, the obtained slices are coded by 3D SPIHT. Our approach was compared with 3D SPIHT with/without motion compensation. The results show our approach offers better performance in lossless compression rate.</p>


Sign in / Sign up

Export Citation Format

Share Document