Analysis of Intermittency in Aircraft Measurements of Velocity, Temperature and Atmospheric Tracers using Wavelet Transforms

1997 ◽  
pp. 85-102 ◽  
Author(s):  
Julio T. Bacmeister ◽  
Stephen D. Eckermann ◽  
Lynn Sparling ◽  
K. Roland Chan ◽  
Max Loewenstein ◽  
...  
2007 ◽  
Vol 66 (6) ◽  
pp. 505-512
Author(s):  
A. D. Kukharev ◽  
Yu. S. Evstifeev ◽  
V. G. Yakovlev

Author(s):  
Eirik Berge

AbstractWe investigate the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })\subset L^{2}(G)$$ W g ( H π ) ⊂ L 2 ( G ) arising from square integrable representations $$\pi :G \rightarrow \mathcal {U}(\mathcal {H}_{\pi })$$ π : G → U ( H π ) of a locally compact group G. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong restrictions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time–frequency analysis, this problem turns out to be equivalent to the HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })$$ W g ( H π ) of a locally compact group G collectively exhaust the ambient space $$L^{2}(G)$$ L 2 ( G ) . We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4804
Author(s):  
Marcin Piekarczyk ◽  
Olaf Bar ◽  
Łukasz Bibrzycki ◽  
Michał Niedźwiecki ◽  
Krzysztof Rzecki ◽  
...  

Gamification is known to enhance users’ participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Resonance ◽  
2004 ◽  
Vol 9 (11) ◽  
pp. 10-22 ◽  
Author(s):  
Jatan K. Modi ◽  
Sachin P. Nanavati ◽  
Amit S. Phadke ◽  
Prasanta K. Panigrahi

Sign in / Sign up

Export Citation Format

Share Document