vibration measurements
Recently Published Documents


TOTAL DOCUMENTS

868
(FIVE YEARS 125)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 254 ◽  
pp. 113745
Author(s):  
Zachariah Wynne ◽  
Tim Stratford ◽  
Thomas P.S. Reynolds

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 492
Author(s):  
Karlo Petrović ◽  
Antonio Petošić ◽  
Tomislav Župan

In this work, the vibrations on the surfaces of the tank wall, stiffeners, and the cover of a 5 MVA transformer experimental model were measured during open-circuit and short-circuit transformer tests. Vibration measurements of a transformer tank side were conducted at discrete points using two different voltage sources in no-load test. Using interpolation functions, the RMS values of acceleration and vibration velocity are visualized and compared for each considered measurement configuration (no-load and load tests and two different excitation sources). Significant differences in mode shapes and amplitudes of vibrations at different frequencies are observed. The maximum RMS values of acceleration, velocity and displacement in the open-circuit test are 0.36 m/s2, 0.31 mm/s, and 0.42 µm, respectively. The maximum values in short-circuit test are 0.74 m/s2, 1.14 mm/s, and 1.8 µm, respectively. In the short-circuit test, the frequency component of 100 Hz is dominant. In the open-circuit test, the first few 100 Hz harmonics are significant (100 Hz, 200 Hz, and 300 Hz). In addition to the visualization of RMS values during the open-circuit and short-circuit tests, animations of the vibrations are created. Fourier analysis and phase comparison between frequency components are also used to show vibration animations at dominant frequencies in the spectrum (100 Hz harmonics). The visualization of the vibrations at the tank wall surfaces is transferred into 3D space in such a way that all 15 surfaces are mapped to the spatial coordinates of the surfaces so that a 3D model of the acceleration, vibration velocity, and displacement of the transformer tank is shown.


2022 ◽  
Vol 162 ◽  
pp. 108040
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Armando Viviano Razionale ◽  
Ciro Santus

2021 ◽  
Vol 9 ◽  
Author(s):  
Franziska Glueer ◽  
Mauro Häusler ◽  
Valentin Gischig ◽  
Donat Fäh

In the past decade, ambient vibration measurements found numerous applications on unstable rock slopes and developed into a powerful tool for site characterization of slope instabilities. In this study, for the first time ambient vibration measurements were applied to a rock mass strongly disturbed and damaged by subsurface explosions. The site above the ammunition storage chamber at Mitholz (Switzerland) is especially interesting because the subsurface geology below the seismic array is well known, including the location of the caverns, and the degree of degradation caused by the subsurface explosions in 1947 of around 40 t TNT of ammunition. Measurement data were analyzed using current state-of-the-art seismic single-station and array methods, focusing on surface-wave dispersion analysis, wave field polarization, wave amplification using site-to-reference spectral ratios and analysis of normal mode behavior. The results allow for calibrating the elastic properties of a 2D numerical rock mechanical model which was used to simulate the stability of the disturbed rock mass during seismic loading. Therefore, ambient vibration measurements can contribute not only to a better understanding of the subsurface, but also for the assessment of earthquake risk.


2021 ◽  
Vol 183 ◽  
pp. 108294
Author(s):  
Olivier Robin ◽  
Patrick O'Donoughue ◽  
Alain Berry ◽  
Vincent Farley ◽  
Kishan Prithipaul

Author(s):  
Matthias Humer ◽  
Stefan Habel

Purpose Due to the installation of the new, more powerful gearbox and the dismantling of the exciter machine, the vibration characteristics of the shaft train will be changed. Therefore, it is necessary to reassess the shaft train. It is to be investigated if the shaft train of the compressor meets the general requirements for bending and torsional vibrations and can be safely operated within the electrical network. The purpose of this paper is to show the necessary alignment of modification, calculation and measurement in such a project.. Design/methodology/approach After some modification work on the shaft train of an air compressor, it was necessary to do some engineering calculations regarding the bending natural and torsional natural frequencies and their mode shapes. The correctness of the calculated values was proven by vibration measurements performed at the shaft train in operation. Findings It can be concluded that the change and replacement of rotating equipment in a shaft train never should be done without any engineering calculations in advance and measurements after the component modification. Most important is that the calculation results have to be compared with the measurement results for verifying the calculation assumptions. In the case described above, one can see that theory and practice match well. In addition to this, the very low damping of torsional vibrations is proved again, which can be a significant problem in some situations. Originality/value Also, today one can find torsional vibration measurements of rotating machines, including frequency, magnitude and damping factor, very seldom. Especially for smaller machines, there are no real comparisons between calculation and measurement are usual. This paper shows that an alignment between theoretical and practical approaches is necessary to avoid operational problems for rotating machines.


Sign in / Sign up

Export Citation Format

Share Document