Synergistic Activation of Transcription in E. coli

Author(s):  
A. Hochschild ◽  
J. K. Joung
Cell ◽  
1991 ◽  
Vol 65 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Rong Li ◽  
Jonathan D. Knight ◽  
Stephen P. Jackson ◽  
Robert Tjian ◽  
Michael R. Botchan

Nature ◽  
1982 ◽  
Vol 296 (5858) ◽  
pp. 680-681 ◽  
Author(s):  
Richard Jund ◽  
Gérard Loison

1993 ◽  
Vol 13 (3) ◽  
pp. 1599-1609
Author(s):  
J Ananthan ◽  
R Baler ◽  
D Morrissey ◽  
J Zuo ◽  
Y Lan ◽  
...  

Synergistic activation of transcription by Drosophila segmentation genes in tissue culture cells provides a model with which to study combinatorial regulation. We examined the synergistic activation of an engrailed-derived promoter by the pair-rule proteins paired (PRD) and fushi tarazu (FTZ). Synergistic activation by PRD requires regions of the homeodomain or adjacent sequences, and that by FTZ requires the first 171 residues. Surprisingly, deletion of the FTZ homeodomain does not reduce the capacity of the protein for synergistic activation, although this mutation abolishes any detectable DNA-binding activity. This finding suggests that FTZ can function through protein-protein interactions with PRD or other components of the homeoprotein transcription complex, adding a new layer of mechanisms that could underlie the functional specificities and combinatorial regulation of homeoproteins.


Science ◽  
1995 ◽  
Vol 270 (5243) ◽  
pp. 1783-1788 ◽  
Author(s):  
F. Sauer ◽  
S. K. Hansen ◽  
R. Tjian

1993 ◽  
Vol 13 (3) ◽  
pp. 1599-1609 ◽  
Author(s):  
J Ananthan ◽  
R Baler ◽  
D Morrissey ◽  
J Zuo ◽  
Y Lan ◽  
...  

Synergistic activation of transcription by Drosophila segmentation genes in tissue culture cells provides a model with which to study combinatorial regulation. We examined the synergistic activation of an engrailed-derived promoter by the pair-rule proteins paired (PRD) and fushi tarazu (FTZ). Synergistic activation by PRD requires regions of the homeodomain or adjacent sequences, and that by FTZ requires the first 171 residues. Surprisingly, deletion of the FTZ homeodomain does not reduce the capacity of the protein for synergistic activation, although this mutation abolishes any detectable DNA-binding activity. This finding suggests that FTZ can function through protein-protein interactions with PRD or other components of the homeoprotein transcription complex, adding a new layer of mechanisms that could underlie the functional specificities and combinatorial regulation of homeoproteins.


1998 ◽  
Vol 18 (6) ◽  
pp. 3395-3404 ◽  
Author(s):  
Ching-Hung Shen ◽  
Janet Stavnezer

ABSTRACT Signal transducer and activator of transcription 6 (Stat6) and NF-κB are widely distributed transcription factors which are induced by different stimuli and bind to distinct DNA sequence motifs. Interleukin-4 (IL-4), which activates Stat6, synergizes with activators of NF-κB to induce IL-4-responsive genes, but the molecular mechanism of this synergy is poorly understood. Using glutathioneS-transferase pulldown assays and coimmunoprecipitation techniques, we find that NF-κB and tyrosine-phosphorylated Stat6 can directly bind each other in vitro and in vivo. An IL-4-inducible reporter gene containing both cognate binding sites in the promoter is synergistically activated in the presence of IL-4 when Stat6 and NF-κB proteins are coexpressed in human embryonic kidney 293 (HEK 293) cells. The same IL-4-inducible reporter gene is also synergistically activated by the endogenous Stat6 and NF-κB proteins in IL-4-stimulated I.29μ B lymphoma cells. Furthermore, Stat6 and NF-κB bind cooperatively to a DNA probe containing both sites, and the presence of a complex formed by their cooperative binding correlates with the synergistic activation of the promoter by Stat6 and NF-κB. We conclude that the direct interaction between Stat6 and NF-κB may provide a basis for synergistic activation of transcription by IL-4 and activators of NF-κB.


Sign in / Sign up

Export Citation Format

Share Document