Element Binding Protein
Recently Published Documents


TOTAL DOCUMENTS

1881
(FIVE YEARS 318)

H-INDEX

123
(FIVE YEARS 20)

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2315
Author(s):  
Jui-Ting Yang ◽  
Yu-Jen Chen ◽  
Chao-Wei Huang ◽  
Ya-Chin Wang ◽  
Harry J. Mersmann ◽  
...  

Tetranectin (TN), a plasminogen-binding protein originally involved in fibrinolysis and bone formation, was later identified as a secreted adipokine from human and rat adipocytes and positively correlated with adipogenesis and lipid metabolism in adipocytes. To elucidate the nutritional regulation of adipogenic TN from diets containing different sources of fatty acids (saturated, n-6, n-3) in adipocytes, we cloned the coding region of porcine TN from a cDNA library and analyzed tissue expressions in weaned piglets fed with 2% soybean oil (SB, enriched in n-6 fatty acids), docosahexaenoic acid oil (DHA, an n-3 fatty acid) or beef tallow (BT, enriched in saturated and n-9 fatty acids) for 30 d. Compared with tissues in the BT- or SB-fed group, expression of TN was reduced in the adipose, liver and lung tissues from the DHA-fed group, accompanied with lowered plasma levels of triglycerides and cholesterols. This in vivo reduction was also confirmed in porcine primary differentiated adipocytes supplemented with DHA in vitro. Then, promoter analysis was performed. A 1956-bp putative porcine TN promoter was cloned and transcription binding sites for sterol regulatory-element binding protein (SREBP)-1c or forkhead box O proteins (FoxO) were predicted on the TN promoter. Mutating binding sites on porcine TN promoters showed that transcriptional suppression of TN by DHA on promoter activity was dependent on specific response elements for SREBP-1c or FoxO. The inhibited luciferase promoter activity by DHA on the TN promoter coincides with reduced gene expression of TN, SREBP-1c, and FoxO1 in human embryonic kidney HEK293T cells supplemented with DHA. To conclude, our current study demonstrated that the adipogenic TN was negatively regulated by nutritional modulation of DHA both in pigs in vivo and in humans/pigs in vitro. The transcriptional suppression by DHA on TN expression was partly through SREBP-1c or FoxO. Therefore, down-regulation of adipogenic tetranectin associated with fibrinolysis and adipogenesis may contribute to the beneficial effects of DHA on ameliorating obesity-induced metabolic syndromes such as atherosclerosis and adipose dysfunctions.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yongmei Cao ◽  
Weifeng Huang ◽  
Fang Wu ◽  
Jiawei Shang ◽  
Feng Ping ◽  
...  

AbstractAcute lung injury induced by ischemia–reperfusion (I/R)-associated pulmonary inflammation is associated with high rates of morbidity. Despite advances in the clinical management of lung disease, molecular therapeutic options for I/R-associated lung injury are limited. Zinc finger protein 36 (ZFP36) is an AU-rich element-binding protein that is known to suppress the inflammatory response. A ZFP36 binding site occurs in the 3ʹ UTR of the cAMP‐response element-binding protein (CREB) binding protein (CREBBP) gene, which is known to interact with apoptotic proteins to promote apoptosis. In this study, we investigate the involvement of ZFP36 and CREBBP on I/R-induced lung injury in vivo and in vitro. Intestinal ischemia/reperfusion (I/R) activates inflammatory responses, resulting in injury to different organs including the lung. Lung tissues from ZFP36-knockdown mice and mouse lung epithelial (MLE)-2 cells were subjected to either Intestinal I/R or hypoxia/reperfusion, respectively, and then analyzed by Western blotting, immunohistochemistry, and real-time PCR. Silico analyses, pull down and RIP assays were used to analyze the relationship between ZFP36 and CREBBP. ZFP36 deficiency upregulated CREBBP, enhanced I/R-induced lung injury, apoptosis, and inflammation, and increased I/R-induced lung fibrosis. In silico analyses indicated that ZFP36 was a strong negative regulator of CREBBP mRNA stability. Results of pull down and RIP assays confirmed that ZFP36 direct interacted with CREBBP mRNA. Our results indicated that ZFP36 can mediate the level of inflammation-associated lung damage following I/R via interactions with the CREBBP/p53/p21/Bax pathway. The downregulation of ZFP36 increased the level of fibrosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Dong ◽  
Yue Xi ◽  
Xinlu Chen ◽  
Zong-Ming Cheng

Abstract Background Drought is a common phenomenon worldwide. It is also one of the main abiotic factors that affect the growth and quality of strawberry. The dehydration-responsive element binding protein (DREB) members that belong to the APETALA2/ethylene-responsive element binding protein (AP2/EREBP) superfamily are unique transcription factors in plants that play important roles in the abiotic stress response. Results Here, a total of 119 AP2/EREBP genes were identified in Fragaria vesca, and the AP2/EREBP superfamily was divided into AP2, RAV, ERF, DREB, and soloist subfamilies, containing 18, 7, 61, 32, and one member(s), respectively. The DREB subfamily was further divided into six subgroups (A-1 to A-6) based on phylogenetic analysis. Gene structure, conserved motifs, chromosomal location, and synteny analysis were conducted to comprehensively investigate the characteristics of FvDREBs. Furthermore, transcriptome analysis revealed distinctive expression patterns among the FvDREB genes in strawberry plants exposed to drought stress. The expression of FvDREB6 of the A-2 subgroup was down-regulated in old leaves and up-regulated in young leaves in response to drought. Furthermore, qRT-PCR analysis found that FvDREB8 from the A-2 subgroup had the highest expression level under drought stress. Together, analyses with the expression pattern, phylogenetic relationship, motif, and promoter suggest that FvDREB18 may play a critical role in the regulation of FvDREB1 and FvDREB2 expression. Conclusions Our findings provide new insights into the characteristics and potential functions of FvDREBs. These FvDREB genes should be further studied as they appear to be excellent candidates for drought tolerance improvement of strawberry.


2021 ◽  
Author(s):  
Georgia A. Giotopoulou ◽  
Giannoula Ntaliarda ◽  
Antonia Marazioti ◽  
Ioannis Lilis ◽  
Foteini Kalogianni ◽  
...  

cAMP response element-binding protein (CREB) mediates proliferative and inflammatory gene transcription in neurodegeneration and cancer, but its role in malignant immune-evasion of lung adenocarcinoma (LUAD) is unknown. We show that human LUAD of smokers are frequently altered along the CREB pathway and we employ mouse models to discover that KRAS-mutant LUAD co-opt CREB to evade immune rejection by tumoricidal neutrophils. For this, KRAS-driven CREB activation suppresses CXC-chemokine expression and prevents recruitment of CXCR1+ neutrophils. CREB1 is shown to be pro-tumorigenic in five different LUAD models, a function that is dependent on host CXCR1. Pharmacologic CREB blockade prevents tumor growth and restores neutrophil recruitment only when initiated before immune-evasion of KRAS-mutant LUAD. CREB and CXCR1 expression in human LUAD are compartmentalized to tumor and stromal cells, respectively, while CREB-regulated genes and neutrophils impact survival. In summary, CREB-mediated immune evasion of KRAS-mutant LUAD relies on signaling to neutrophil CXCR1 and is actionable.


Author(s):  
Lina Zhao ◽  
Wenjun Xia ◽  
Peng Jiang

The cAMP response element binding protein (CREB) family activating transcription factor 1 (ATF1) and cAMP response element binding protein 1 (CREB1) have been reported in a diverse group of tumors, however, the mechanistic basis for this remains unclear. Here we found that CREB1 and ATF1 unexpectedly regulate glutathione (GSH) biosynthesis by suppressing the expression of glutamate-cysteine ligase modifier subunit (GCLM) and glutathione synthase (GSS), two key enzymes of GSH biosynthesis pathway. Mechanistic studies reveal that GCLM and GSS are direct transcriptional targets of CREB1 and ATF1. Through repressing the expression of these two enzymes, CREB1 and ATF1 reduce the GSH biosynthesis and the capability of cells to detoxicate reactive oxygen species (ROS), thereby increasing cellular susceptibility to oxidative stress. Therefore, our findings link CREB1 family to cellular metabolism, and uncover a potential therapeutic approach by targeting GCLM or oxidative stress for the treatment of tumors with relatively high expression of CREB1 family proteins.


Sign in / Sign up

Export Citation Format

Share Document