Grad’s 13-Moment System for a Dense Gas of Inelastic Spheres

Author(s):  
J. T. Jenkins ◽  
M. W. Richman
Keyword(s):  
1985 ◽  
Vol 87 (4) ◽  
pp. 355-377 ◽  
Author(s):  
J. T. Jenkins ◽  
M. W. Richman
Keyword(s):  

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1842-1847 ◽  
Author(s):  
Brady P. Brown ◽  
Brian M. Argrow
Keyword(s):  

Author(s):  
Seyed Reza Amini Niaki ◽  
Joseph Mouallem ◽  
Christian Milioli ◽  
Fernando Milioli

2006 ◽  
Vol 2 (S237) ◽  
pp. 475-475
Author(s):  
Yoshito Shimajiri ◽  
S. Takahashi ◽  
S. Takakuwa ◽  
M. Saito ◽  
R. Kawabe

AbstractSince most stars are born as members of clusters (Lada & Lada 2003), it is important to clarified the detailed mechanism of cluster formation for comprehensive understanding of star formation. However, our current understanding of cluster formation is limited due to the followings; (a)Cluster forming regions are located at the far distance.(b)There are complex mixtures of outflows and dense gas in cluster forming regions. So, we focused on the Orion Molecular Cloud 2 region (OMC-2), a famous cluster-forming region (Lada & Lada 2003) and the most nearest GMC. We observed the FIR 4 region with the Nobeyama Millimeter Array(NMA), Atacama Submillimeter Telescope Experiment (ASTE). In this region, there are 3 protostars (FIR3, FIR4, FIR5) which were identified as 1.3 mm dust continuum sources (Chini et al. 1997) and driving sources of mixed outflows, and FIR 4 is the most strongest source of 1.3 mm dust continuum in OMC-2. Molecular lines we adopted are a high density (105cm−3) gas tracer of H13CO+ (J=1-0), a molecular outflow tracer of 12CO(J=1-0) and 12CO(J=3-2), and SiO(J=2-1 v=0) as a tracer of shocks associated with an interaction between outflows and dense gas.From results of the 12CO(J=1-0) outflow, H13CO+ dense gas, and the SiO shock, the outflow from FIR 3 interacts with dense gas in the FIR 4 region. Moreover the Position-Velocity diagram along the major axis of the 12CO(J=3-2) outflow shows that the 12CO(J=1-0) and SiO emission exhibits a L shape (the line widths increase in the interacting region in morphology). This is an evidence of interaction between the outflows and dense gas (Takakuwa et al. 2003). From result of the 3 mm dust continuum, the interacted region by the molecular outflow of FIR 3 is an assemble of seven dense cores. The mass of each core is 0.1-0.8 M. This clumpy structure is evident only at FIR 4 in the entire OMC-2/3 region. There are possible that two cores are in the proto-stellar phase, because 3 mm dust continuum source correspond to NIR source or 3.6 cm f-f jet source. From these results, cores in the FIR 4 region may be potential source of the next-generation stars. In the other words, there is a possibility that the molecular outflow ejected from FIR 3 is triggering the cluster formation in the FIR 4 region.


2020 ◽  
Vol 501 (1) ◽  
pp. 1143-1159
Author(s):  
Vijit Kanjilal ◽  
Alankar Dutta ◽  
Prateek Sharma

ABSTRACT We revisit the problem of the growth of dense/cold gas in the cloud-crushing set-up with radiative cooling. The relative motion between the dense cloud and the diffuse medium produces a turbulent boundary layer of mixed gas with a short cooling time. This mixed gas may explain the ubiquity of the range of absorption/emission lines observed in various sources such as the circumgalactic medium and galactic/stellar/active galactic nucleus outflows. Recently, Gronke & Oh showed that the efficient radiative cooling of the mixed gas can lead to continuous growth of the dense cloud. They presented a threshold cloud size for the growth of dense gas that was contradicted by the more recent works of Li et al. & Sparre et al. These thresholds are qualitatively different as the former is based on the cooling time of the mixed gas whereas the latter is based on the cooling time of the hot gas. Our simulations agree with the threshold based on the cooling time of the mixed gas. We argue that the radiative cloud-crushing simulations should be run long enough to allow for the late-time growth of the dense gas due to cooling of the mixed gas but not so long that the background gas cools catastrophically. Moreover, the simulation domain should be large enough that the mixed gas is not lost through the boundaries. While the mixing layer is roughly isobaric, the emissivity of the gas at different temperatures is fundamentally different from an isobaric single-phase steady cooling flow.


2015 ◽  
Vol 806 (1) ◽  
pp. L17 ◽  
Author(s):  
A. M. Swinbank ◽  
S. Dye ◽  
J. W. Nightingale ◽  
C. Furlanetto ◽  
Ian Smail ◽  
...  

2018 ◽  
Vol 192 ◽  
pp. 218-240 ◽  
Author(s):  
Simon Gant ◽  
Jeffrey Weil ◽  
Luca Delle Monache ◽  
Bryan McKenna ◽  
Maria M. Garcia ◽  
...  

2014 ◽  
Vol 564 ◽  
pp. A106 ◽  
Author(s):  
P. Tremblin ◽  
N. Schneider ◽  
V. Minier ◽  
P. Didelon ◽  
T. Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document