EFFECT OF THE MACRO-SCALE TOPOLOGY OVER THE EFFECTIVE DRAG COEFFICIENT IN DENSE GAS-SOLID FLUIDIZED FLOWS

Author(s):  
Seyed Reza Amini Niaki ◽  
Joseph Mouallem ◽  
Christian Milioli ◽  
Fernando Milioli
Author(s):  
Sean Davis ◽  
Oishik Sen ◽  
Gustaaf Jacobs ◽  
H. S. Udaykumar

The accuracy and efficiency of several algorithms that couple output from full resolution micro-scale Direct Numerical Simulation computations to input for macro-scale Eulerian-Lagrangian (EL) methods for the computation of high-speed, particle-laden flow are assessed. A Stochastic Collocation method, a Gaussian Radial Basis Function (RBF) Artificial Neural Network (ANN), and an improved RBF-ANN are compared for the fitting of an analytical drag coefficient formula that depends on Mach number and Reynolds number. The improved RBF-ANN uses a clustering algorithm to enhance conditioning of interpolation matrices. The fitted drag coefficient mantle, used to trace point particles in macro-scale computations, is in excellent agreement with the analytical drag formula. The SC method requires fewer micro-scale realizations to obtain comparable accuracy of the drag coefficient. The Gaussian RBF does not converge monotonically, while the improved RBF-ANN converges algebraically and has the potential to provide error estimates.


Author(s):  
Joseph Mouallem ◽  
Seyed Reza Amini Niaki ◽  
Christian Milioli ◽  
Fernando Milioli

Author(s):  
Seyed Reza Amini Niaki ◽  
Joseph Mouallem ◽  
Norman Chavez Cussy ◽  
Gabriel Jonatas Santos Netzlaff ◽  
Christian Milioli ◽  
...  

Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


2016 ◽  
Vol 10 (6) ◽  
pp. 390 ◽  
Author(s):  
Qummare Azam ◽  
Mohd Azmi Ismail ◽  
Nurul Musfirah Mazlan ◽  
Musavir Bashir

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1842-1847 ◽  
Author(s):  
Brady P. Brown ◽  
Brian M. Argrow
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document