continuum source
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 89)

H-INDEX

42
(FIVE YEARS 5)

Analytica ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 24-35
Author(s):  
Daniel Baecker ◽  
Sebastian Guenther

This communication introduces the first-time application of high-resolution continuum-source molecular absorption spectrometry (HR CS MAS) for the quantification of a peptide. The graphite furnace technique was employed and the tripeptide glutathione (GSH) served as a model compound. Based on measuring sulfur in terms of carbon monosulfide (CS), a method was elaborated to analyze aqueous solutions of GSH. The most prominent wavelength of the CS molecule occurred at 258.0560 nm and was adduced for monitoring. The methodological development covered the optimization of the pyrolysis and vaporization temperatures. These were found optimally to be 250 °C and 2250 °C, respectively. Moreover, the effect of modifiers (zirconium, calcium, magnesium, palladium) on the absorption signals was investigated. The best results were obtained after permanent coating of the graphite tube with zirconium (total amount of 400 μg) and adding a combination of palladium (10 µL, 10 g L−1) and calcium (2 µL, 1 g L−1) as a chemical modifier to the probes (10 µL). Aqueous standard samples of GSH were used for the calibration. It showed a linear range of 2.5–100 µg mL−1 sulfur contained in GSH with a correlation coefficient R2 > 0.997. The developed method exhibited a limit of detection (LOD) and quantification (LOQ) of 2.1 µg mL−1 and 4.3 µg mL−1 sulfur, respectively. The characteristic mass accounted for 5.9 ng sulfur. The method confirmed the general suitability of MAS for the analysis of an oligopeptide. Thus, this study serves as groundwork for further development in order to extend the application of classical atomic absorption spectrometry (AAS).


2021 ◽  
Vol 42 (6) ◽  
Author(s):  
Nikolaos S. Thomaidis

Electrothermal or graphite furnace atomic absorption spectrometry (ETAAS or GFAAS) is one of the most widely used techniques for determining elements in different matrices (e.g., foodstuffs, pharmaceuticals, biological specimens, nanomaterials, polymers, fuels and environmental media). Numerous elements can be simply and quickly determined with high precision and accuracy, low detection limits, and at moderate cost. The technique is also suitable for direct solid and slurry sample analysis. A crucial feature of this technique is that it can perform simultaneous or sequential multi-element analysis. Over the years, many instruments have come on the market for multi-elemental analysis using mostly line source (LS) GFAAS and high-resolution continuum source (HR-CS) GFAAS. This review covers publications from 2000 to 2020related to the simultaneous or sequential multi-elemental analysis by LS-GFAAS and HR-CS-GFAAS. Mainly the applications, the limits of detection, the use of internal standardization and other aspects regarding the matrix, pyrolysis and atomization temperatures and modifiers are discussed. Finally, a critical comparison is made between the LS-GFAAS and HR-CS-GFAAS techniques.


2021 ◽  
Vol 26 (5) ◽  
pp. 883-891
Author(s):  
Camila Angélica Baum ◽  
Valter Antonio Becegato ◽  
Laís Lavnitcki ◽  
Pâmela Becalli Vilela ◽  
Eduardo Costa Duminelli ◽  
...  

ABSTRACT The burial of bodies is a potentially polluting activity. Taking this into consideration, the aim of the present study was to verify the compliance of two cemeteries with environmental legislation and to quantify the concentrations of heavy metals in soils affected by burial activities. Physicochemical characterization of the soil was performed by analyzing control samples from areas near the cemeteries. Concentrations of cadmium, lead, chromium, nickel, zinc and copper were determined using high-resolution continuum source atomic absorption spectrometry. The two cemeteries had unsatisfactory properties for the retention of metal cations, with clay percentages ranging from 15.40 to 41.40% and sand percentages ranging from 28.75 to 66.85%. The control samples presented low cation exchange capacity (12.27 to 22.73 cmolc/dm³) and high aluminum (Al3+) saturation (66.74 to 90.16%). Although neither of the two cemeteries had concentrations above the limits established for the metals analyzed by Resolution No. 420/2009 of the National Environment Council, the contaminants may be leaching to groundwater due to inadequate soil characteristics.


Sign in / Sign up

Export Citation Format

Share Document