Neuropathology of the Processes in the Third Ventricle and the Brain Stem

Author(s):  
K. J. Zülch
Neurosurgery ◽  
2003 ◽  
Vol 53 (2) ◽  
pp. 387-392 ◽  
Author(s):  
Michael B. Horowitz ◽  
Kamal Ramzipoor ◽  
Ajit Nair ◽  
Susan Miller ◽  
George Rappard ◽  
...  

Abstract OBJECTIVE Endoscopic third ventriculostomy has developed into a therapeutic alternative to shunting for the management of carefully selected patients with primarily noncommunicating hydrocephalus. This procedure, however, requires a general anesthetic and necessitates violation of the brain parenchyma and manipulation near vital neural structures to access the floor of the third ventricle. Using two cadavers and off-the-shelf angiographic catheters, we sought to determine whether it was possible to navigate a catheter, angioplasty balloon, and stent percutaneously through the subarachnoid space from the thecal sac into the third ventricle so as to perform a third ventriculostomy from below. METHODS Using biplane angiography and off-the-shelf angiographic catheters along with angioplasty balloons and stents, we were able to pass a stent coaxially from the thecal sac to and across the floor of the third ventricle so as to achieve a third ventriculostomy from below. RESULTS Coaxial catheter techniques allowed for the percutaneous insertion of a stent across the floor of the third ventricle. Ventriculostomy was confirmed by injecting contrast medium into the lateral ventricle and seeing it pass through the stent and into the chiasmatic cistern. CONCLUSION We describe the performance of third ventriculostomies in two cadavers by use of the new concept of percutaneous intradural neuronavigation. This procedure may obviate the need for general anesthetic and minimize the potential for brain and vascular injury, especially if ultimately combined with magnetic resonance fluoroscopy.


Author(s):  
Ignacio Bernabeu ◽  
Monica Marazuela ◽  
Felipe F. Casanueva

The hypothalamus is the part of the diencephalon associated with visceral, autonomic, endocrine, affective, and emotional behaviour. It lies in the walls of the third ventricle, separated from the thalamus by the hypothalamic sulcus. The rostral boundary of the hypothalamus is roughly defined as a line through the optic chiasm, lamina terminalis, and anterior commissure, and an imaginary line extending from the posterior commissure to the caudal limit of the mamillary body represents the caudal boundary. Externally, the hypothalamus is bounded rostrally by the optic chiasm, laterally by the optic tract, and posteriorly by the mamillary bodies. Dorsolaterally, the hypothalamus extends to the medial edge of the internal capsule (Fig. 2.1.1) (1). The complicated anatomy of this area of the central nervous system (CNS) is the reason why, for a long time, little was known about its anatomical organization and functional significance. Even though the anatomy of the hypothalamus is well established it does not form a well-circumscribed region. On the contrary, it is continuous with the surrounding parts of the CNS: rostrally, with the septal area of the telencephalon and anterior perforating substance; anterolaterally with the substantia innominata; and caudally with the central grey matter and the tegmentum of the mesencephalon. The ventral portion of the hypothalamus and the third ventricular recess form the infundibulum, which represents the most proximal part of the neurohypophysis. A bulging region posterior to the infundibulum is the tuber cinereum, and the zone that forms the floor of the third ventricle is called the median eminence. The median eminence represents the final point of convergence of pathways from the CNS on the peripheral endocrine system and it is supplied by primary capillaries of the hypophyseal portal vessels. The median eminence is the anatomical interface between the brain and the anterior pituitary. Ependymal cells lining the floor of the third ventricle have processes that traverse the width of the median eminence and terminate near the portal perivascular space; these cells, called tanycytes, provide a structural and functional link between the cerebrospinal fluid (CSF) and the perivascular space of the pituitary portal vessels. The conspicuous landmarks of the ventral surface of the brain can be used to divide the hypothalamus into three parts: anterior (preoptic and supraoptic regions), middle (tuberal region), and caudal (mamillary region). Each half of the hypothalamus is also divided into a medial and lateral zone. The medial zone contains the so-called cell-rich areas with well-defined nuclei. The scattered cells of the lateral hypothalamic area have long overlapping dendrites, similar to the cells of the reticular formation. Some of these neurons send axons directly to the cerebral cortex and others project down into the brainstem and spinal cord.


2019 ◽  
Vol 375 (1792) ◽  
pp. 20190154 ◽  
Author(s):  
Gregor Eichele ◽  
Eberhard Bodenschatz ◽  
Zuzana Ditte ◽  
Ann-Kathrin Günther ◽  
Shoba Kapoor ◽  
...  

The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.


Sign in / Sign up

Export Citation Format

Share Document