Observations of AGN with Peculiar or Very Broad Emission Line Profiles: OQ 208

1992 ◽  
pp. 217-218
Author(s):  
P. Marziani ◽  
M. Calvani ◽  
J. W. Sulentic
1997 ◽  
Vol 159 ◽  
pp. 193-194 ◽  
Author(s):  
C. Martin Gaskell ◽  
Stephanie A. Snedden

AbstractWe postulate that all structure in broad lines can be explained by a central component (at the systemic redshift) and the addition of two ‘displaced components’, one blueshifted and the other redshifted. We have been able to successfully classify all Balmer-line profiles on this basis. 3C 390.3-type objects are merely examples where the shifts of the displaced components are unusually large. We believe that the displaced peaks are less prominent in the UV lines because the higher ionization lines are broader.


1997 ◽  
Vol 159 ◽  
pp. 197-198
Author(s):  
Giovanna M. Stirpe ◽  
Andrew Robinson ◽  
David J. Axon

AbstractWe present preliminary results from a study of broad-line profiles in active galaxies. A simple model in which the emissivity is a broken power-law function of radius, and the BLR clouds emit anisotropically, yields very good fits to almost all the Ha profiles in our data base.


2009 ◽  
Vol 53 (7-10) ◽  
pp. 191-197 ◽  
Author(s):  
A.I. Shapovalova ◽  
L.Č. Popović ◽  
N.G. Bochkarev ◽  
A.N. Burenkov ◽  
V.H. Chavushyan ◽  
...  

2020 ◽  
Vol 495 (1) ◽  
pp. 971-980
Author(s):  
S G Sergeev

ABSTRACT Results of the analysis of the variability of the H β and H α broad emission-line profiles and the He ii λ4686 Å emission-line fluxes in the 3C 390.3 nucleus during 1992–2014 are present. The observed velocity-dependent lag for the Balmer lines is similar to that expected from the Keplerian disc configuration, although there are some differences. Probably, a radial infall motion can be present in the broad-line region of 3C 390.3 in addition to the Keplerian rotation. The lag of the broad He ii line is 26 ± 8 d, significantly less than that of the Balmer lines, so the He ii emission region is much smaller in size. In terms of the power-law relationship between line and optical continuum fluxes with slowly varying scale factor c(t): $F_{\rm line}\propto c(t)\, F_{\rm cont}^a$, the power a is 1.03 for the broad He ii line, while according to Paper I, the power is equal to 0.77 and 0.54 for the broad H β and H α lines, respectively. It means that the variability amplitude is the largest in the He ii, less in H β, and more less in H α. However, the Balmer lines contain a long-term trend that is not seen in the helium line. The narrow He ii line is variable with the amplitude (max-to-min ratio) Rmax ≈ 3, which is much greater than the variability amplitudes of both the narrow Balmer lines and the narrow [O iii] λ5007 Å line.


1994 ◽  
Vol 423 ◽  
pp. 131 ◽  
Author(s):  
M. S. Brotherton ◽  
Beverley J. Wills ◽  
Charles C. Steidel ◽  
Wallace L. W. Sargent

Sign in / Sign up

Export Citation Format

Share Document