disc configuration
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 342
Author(s):  
Zoran Bergant ◽  
Barbara Šetina Batič ◽  
Imre Felde ◽  
Roman Šturm ◽  
Marko Sedlaček

NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and Vickers hardness tests. The resulting microstructures consisted of a γ-Ni and Ni3B matrix, strengthened with Co and W, Ni3Si, CrB, Cr7C3, Cr23C6, WC/W2C phases. In coatings with 30, 40 and 50 wt.% WC-12Co, a solid solution, strengthened multi-matrix NiCrWCo phase formed, which yielded a higher matrix hardness. Wear tests that monitored the friction coefficients were performed with a tribometer that contained a ball-on-disc configuration, Al2O3 counter-body and reciprocal sliding mode at room temperature. The major wear mode on the NiCrBSi coatings without the WC-12Co was adhesive with a high wear rate and visible material loss by flaking, delamination and micro-ploughing. The addition of WC-12Co to the NiCrBSi coating significantly increased the wear resistance and changed the major wear mechanism from adhesion to three-body abrasion and fatigue wear.


Tribologia ◽  
2021 ◽  
Vol 297 (3) ◽  
pp. 9-18
Author(s):  
Tomasz Desaniuk ◽  
Dominika Soboń ◽  
Wojciech Jurczak

The study aimed to compare the effect of humidity on the operation of tribological systems. The tested friction and wear are external properties; therefore, their values may differ significantly depending on the operating parameters of the friction junction and environmental conditions. Tribological tests were carried out on a TRB3 tribometer in a dry sliding mode at a relative humidity of 50% ± 5% and 90% ± 5% in the ball-on-disc configuration with a load of 15 N. The friction junction consisted of a sample made of 100Cr6 steel, and three counter-samples were made of 100Cr6, SiC, and Al2O3 steel. The geometric structure of the surface was examined with an optical profiler. The tribological test results showed reduced linear wear and friction coefficient at a relative humidity of 90% ± 5% compare to its 50% ± 5%. The paper also presents the results for the sound recorded in the 16-bit linear PCM standard and analysed in a Spectra-Plus program.


Author(s):  
A. Sánchez-Islas ◽  
J. Martínez-Trinidad ◽  
I. Campos-Silva ◽  
U. Figueroa-López ◽  
J. Martínez-Londoño ◽  
...  

Author(s):  
Ismaila Kayode Aliyu ◽  
Mohammed Abdul Samad ◽  
Amro M Al-Qutub

Ultra-high molecular weight polyethylene nanocomposite coatings reinforced with 1 wt.% graphene nanoplatelets were deposited on aluminum substrates. Sliding wear tests with a pin-on-disc configuration were conducted at different temperatures (25oC, 75oC, 90oC, 115oC, and 125oC) to evaluate the wear behavior of the coating at elevated temperatures. The ultra-high molecular weight polyethylene/1 wt.% graphene nanoplatelets nanocomposite coating showed an outstanding performance by passing the wear test without failing even until temperatures of 115oC as compared to the pure ultra-high molecular weight polyethylene coating which failed at a much lower temperature of 75oC, indicating an improvement in the operating temperature range of ultra-high molecular weight polyethylene by at least 44%.


10.30544/640 ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 397-409
Author(s):  
Kheireddine BOUZID ◽  
Rim LAMARI ◽  
Nasser Eddine BELIARDOUH ◽  
Corrine NOUVEAU ◽  
Barnali Biswas

Tools coated CrN based alloys are currently used in several industries for machining and manufacturing, but present severe wear, limiting their service life. Seeking an alternative, three CrMoN monolayers (~1µm in thickness) coatings with varying in the Mo percentage content were elaborated using the RF magnetron co-sputtering method. These coatings were evaluated and compared with the alloy currently used (CrN) by electrochemical tests in NaCl solution (stationary and no stationary method) and sliding wear tests (ball-on-disc configuration) performed at room temperature. The results indicate that the samples coated with CrMoN presented better performance against wear and corrosion than the uncoated sample. Among the coatings, the labeled C1 (27 % Mo) showed the best corrosion resistance as it presents a positive corrosion potential Ecorr. However, the best wear resistance (lowest coefficient of friction) was shown by coating labeled C4 (33 % Mo). All of the tested specimens underwent abrasive wear in addition to adhesive wear.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5531
Author(s):  
Edouard A. T. Davin ◽  
Anne-Lise Cristol ◽  
Arnaud Beaurain ◽  
Philippe Dufrénoy ◽  
Neomy Zaquen

In this study, through severe reduced-scale braking tests, we investigate the wear and integrity of organic matrix brake pads against gray cast iron (GCI) discs. Two prototype pad materials are designed with the aim of representing a typical non-metal NAO and a low-steel (LS) formulation. The worn surfaces are observed with SEM. The toughness of the pad materials is tested at the raw state and after a heat treatment. During braking, the LS-GCI disc configuration produces heavy wear. The friction parts both keep their macroscopic integrity and wear appears to be homogeneous. The LS pad is mostly covered by a layer of solid oxidized steel. The NAO-GCI disc configuration wears dramatically and cannot reach the end of the test program. The NAO pad suffers many deep cracks. Compacted third body plateaus are scarce and the corresponding disc surface appears to be very heterogeneous. The pad materials both show similar strength at the raw state and similar weakening after heat treatment. However, the NAO material is much more brittle than the LS material in both states, which seems to favor the growth of cracks. The observations of crack faces suggest that long steel fibers in the LS material palliate the brittleness of the matrix, even after heat damage.


Author(s):  
Mohammad A Chowdhury ◽  
Bengir A Shuvho ◽  
Nayem Hossain ◽  
Mahamudul Hassan ◽  
Uttam K Debnath ◽  
...  

The friction and wear characteristics of stainless steel diffused with Si-based ceramics were investigated using pin-and-disc configuration under reciprocation motion, rotational motion, and simultaneous motion. The pin material was diffused by the combination of 60% Ti2O3, 30% Al2O3, and 10% Si2O3. Experiments have been carried out both in diffused and non-diffused conditions. Both the friction coefficient and wear rate have been possible to reduce by diffused pin material. The effects of both friction coefficient and wear rate have been studied on ceramics composites at different pin-and-disc motions. Experiments were conducted underpin motions of 0.15–0.25 m/s, disc motions of 0.5–0.6 m/s, and normal loads of 2.5–3.5 N. A relation was found among friction, wear and surface hardness of the composite. The friction coefficient and wear resistance were improved of stainless steel diffused with ceramics. Scanning electron microscopic analysis was performed to observe the morphology of ceramic and pin material.


2021 ◽  
Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3812
Author(s):  
Agnieszka Twardowska ◽  
Marcin Podsiadło ◽  
Iwona Sulima ◽  
Krzysztof Bryła ◽  
Paweł Hyjek

Titanium diboride (TiB2) is a hard, refractory material, attractive for a number of applications, including wear-resistant machine parts and tools, but it is difficult to densify. The spark plasma sintering (SPS) method allows producing TiB2-based composites of high density with different sintering aids, among them titanium silicides. In this paper, Ti5Si3 is used as a sintering aid for the sintering of TiB2/10 wt % Ti5Si3 and TiB2/20 wt % Ti5Si3 composites at 1600 °C and 1700 °C for 10 min. The phase composition of the initial powders and produced composites was analyzed by the X-ray diffraction method using CuKα radiation. The microstructure was examined using scanning electron microscopy, accompanied by energy-dispersive spectroscopy (EDS). The hardness was determined using a diamond indenter of Vickers geometry loaded at 9.81 N. Friction–wear properties were tested in the dry sliding test in a ball-on-disc configuration, using WC as a counterpart material. The major phases present in the TiB2/Ti5Si3 composites were TiB2 and Ti5Si3. Traces of TiC were also identified. The hardness of the TiB2/Ti5Si3 composites was in the range of 1860–2056 HV1 and decreased with Ti5Si3 content, as well as the specific wear rate Wv. The coefficient of friction for the composites was in the range of 0.5–0.54, almost the same as for TiB2 sinters. The main mechanism of wear was abrasive.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Andrzej Dzierwa ◽  
Pawel Pawlus

AbstractThe main objective of this work is to model wear of a disc which was subjected to dry contact with a ball in unidirectional sliding. Tribological tests of sliding pairs were carried out using a tribological tester T-11 in a ball-on disc configuration. Stationary balls made of 100Cr6 steel with a hardness of 62 ± 2 HRC co-acted with rotating discs with 42CrMo4 steel with a hardness of 40 ± 2HRC. Discs were machined by lapping, grinding, milling, and vapour blasting. The values of the Sq parameter of disc surfaces were between 0.1 and 5.86 µm. Wear volumes of the discs were lower for bigger roughness heights. The simulation of disc wear was conducted on the basis of the repetitive contact between sliding surfaces. Strong correlation was achieved between the modeled and measured volumetric wear levels.


Sign in / Sign up

Export Citation Format

Share Document