New Numerical Methods for High Dimensional Hopf Bifurcation Problems

Author(s):  
J. Wu ◽  
K. Zhou
Author(s):  
Songhui Zhu ◽  
Pei Yu ◽  
Stacey Jones

Normal form theory is a powerful tool in the study of nonlinear systems, in particular, for complex dynamical behaviors such as stability and bifurcations. However, it has not been widely used in practice due to the lack of efficient computation methods, especially for high dimensional engineering problems. The main difficulty in applying normal form theory is to determine the critical conditions under which the dynamical system undergoes a bifurcation. In this paper a computationally efficient method is presented for determining the critical condition of Hopf bifurcation by calculating the Jacobian matrix and the Hurwitz condition. This method combines numerical and symbolic computation schemes, and can be applied to high dimensional systems. The Lorenz system and the extended Malkus-Robbins dynamo system are used to show the applicability of the method.


1994 ◽  
Vol 4 (12) ◽  
pp. 2203-2215
Author(s):  
Wu Baisheng ◽  
Tassilo Küpper

2021 ◽  
Vol 43 (1) ◽  
pp. B30-B54
Author(s):  
J. G. López-Salas ◽  
S. Pérez-Rodríguez ◽  
C. Vázquez

2020 ◽  
Vol 117 (17) ◽  
pp. 9183-9193
Author(s):  
Lars Ruthotto ◽  
Stanley J. Osher ◽  
Wuchen Li ◽  
Levon Nurbekyan ◽  
Samy Wu Fung

Mean field games (MFG) and mean field control (MFC) are critical classes of multiagent models for the efficient analysis of massive populations of interacting agents. Their areas of application span topics in economics, finance, game theory, industrial engineering, crowd motion, and more. In this paper, we provide a flexible machine learning framework for the numerical solution of potential MFG and MFC models. State-of-the-art numerical methods for solving such problems utilize spatial discretization that leads to a curse of dimensionality. We approximately solve high-dimensional problems by combining Lagrangian and Eulerian viewpoints and leveraging recent advances from machine learning. More precisely, we work with a Lagrangian formulation of the problem and enforce the underlying Hamilton–Jacobi–Bellman (HJB) equation that is derived from the Eulerian formulation. Finally, a tailored neural network parameterization of the MFG/MFC solution helps us avoid any spatial discretization. Our numerical results include the approximate solution of 100-dimensional instances of optimal transport and crowd motion problems on a standard work station and a validation using a Eulerian solver in two dimensions. These results open the door to much-anticipated applications of MFG and MFC models that are beyond reach with existing numerical methods.


Sign in / Sign up

Export Citation Format

Share Document