Kinetic Energy Bounds and Their Application to the Stability of Matter

Author(s):  
Elliott H. Lieb
2018 ◽  
Vol 52 (3) ◽  
pp. 893-944 ◽  
Author(s):  
Raphaèle Herbin ◽  
Jean-Claude Latché ◽  
Trung Tan Nguyen

In this paper, we build and analyze the stability and consistency of decoupled schemes, involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These schemes are based on staggered space discretizations, with an upwinding performed with respect to the material velocity only. The pressure gradient is defined as the transpose of the natural velocity divergence, and is thus centered. The velocity convection term is built in such a way that the solutions satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to be non-negative under a CFL condition. In the case of the full Euler equations, we solve the internal energy balance, to avoid the space discretization of the total energy, whose expression involves cell-centered and face-centered variables. However, since the residual terms in the kinetic energy balance (probably) do not tend to zero with the time and space steps when computing shock solutions, we compensate them by corrective terms in the internal energy equation, to make the scheme consistent with the conservative form of the continuous problem. We then show, in one space dimension, that, if the scheme converges, the limit is indeed an entropy weak solution of the system. In any case, the discretization preserves by construction the convex of admissible states (positivity of the density and, for Euler equations, of the internal energy), under a CFL condition. Finally, we present numerical results which confort this theory.


1971 ◽  
Vol 48 (2) ◽  
pp. 365-384 ◽  
Author(s):  
C. F. Chen ◽  
R. P. Kirchner

The stability of the flow induced by an impulsively started inner cylinder in a Couette flow apparatus is investigated by using a linear stability analysis. Two approaches are taken; one is the treatment as an initial-value problem in which the time evolution of the initially distributed small random perturbations of given wavelength is monitored by numerically integrating the unsteady perturbation equations. The other is the quasi-steady approach, in which the stability of the instantaneous velocity profile of the basic flow is analyzed. With the quasi-steady approach, two stability criteria are investigated; one is the standard zero perturbation growth rate definition of stability, and the other is the momentary stability criterion in which the evolution of the basic flow velocity field is partially taken into account. In the initial-value problem approach, the predicted critical wavelengths agree remarkably well with those found experimentally. The kinetic energy of the perturbations decreases initially, reaches a minimum, then grows exponentially. By comparing with the experimental results, it may be concluded that when the perturbation kinetic energy has grown a thousand-fold, the secondary flow pattern is clearly visible. The time of intrinsic instability (the time at which perturbations first tend to grow) is about ¼ of the time required for a thousandfold increase, when the instability disks are clearly observable. With the quasi-steady approach, the critical times for marginal stability are comparable to those found using the initial-value problem approach. The predicted critical wavelengths, however, are about 1½ to 2 times larger than those observed. Both of these points are in agreement with the findings of Mahler, Schechter & Wissler (1968) treating the stability of a fluid layer with time-dependent density gradients. The zero growth rate and the momentary stability criteria give approximately the same results.


2006 ◽  
Vol 249-250 ◽  
pp. 396-402 ◽  
Author(s):  
S. Feil ◽  
K. Głuch ◽  
S. Matt-Leubner ◽  
O. Echt ◽  
C. Lifshitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document