Curves in ℝd. Systems of ODEs

Author(s):  
Jürgen Jost
Keyword(s):  
BIOMATH ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 1604231
Author(s):  
A.N. Pete ◽  
Peter Mathye ◽  
Igor Fedotov ◽  
Michael Shatalov

An inverse numerical method that estimate parameters of dynamic mathematical models given some information about unknown trajectories at some time is applied to examples taken from Biology and Ecology. The method consisting of determining an over-determined system of algebraic equations using experimental data. The solution of the over-determined system is then obtained using, for example the least-squares method. To illustrate the effectiveness of the method an analysis of examples and corresponding numerical example are presented.


Author(s):  
Hajrudin Pasic ◽  
Robert L. Williams ◽  
Chunwu Hui

Abstract A new algorithm is presented for iterative solution of systems of nonlinear ordinary differential equations (ODEs) with any order for multibody dynamics and control problems. The collocation technique (based on the explicit fixed-point iteration scheme) may be used for solving both initial value problems (IVPs) and boundary value problems (BVPs). The BVP is solved by first transforming it into the IVP. If the Lipschitz constant is large and the algorithm diverges in a single (‘long’) domain, the domain is partitioned into a number of subdomains and the local solutions of the corresponding BVPs are matched either locally (in parallel) or globally. The technique is general and may be applied to general systems of ODEs in any field. As an illustration, the forward dynamics problem of a manipulator is solved as an IVP and then as a BVP.


2011 ◽  
Vol 35 (1) ◽  
pp. 80-92 ◽  
Author(s):  
Mojtaba Hajipour ◽  
S. Mohammad Hosseini
Keyword(s):  

2004 ◽  
Vol 127 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Pankaj Wahi ◽  
Anindya Chatterjee

We present a Galerkin projection technique by which finite-dimensional ordinary differential equation (ODE) approximations for delay differential equations (DDEs) can be obtained in a straightforward fashion. The technique requires neither the system to be near a bifurcation point, nor the delayed terms to have any specific restrictive form, or even the delay, nonlinearities, and/or forcing to be small. We show through several numerical examples that the systems of ODEs obtained using this procedure can accurately capture the dynamics of the DDEs under study, and that the accuracy of solutions increases with increasing numbers of shape functions used in the Galerkin projection. Examples studied here include a linear constant coefficient DDE as well as forced nonlinear DDEs with one or more delays and possibly nonlinear delayed terms. Parameter studies, with associated bifurcation diagrams, show that the qualitative dynamics of the DDEs can be captured satisfactorily with a modest number of shape functions in the Galerkin projection.


Sign in / Sign up

Export Citation Format

Share Document