Hormone Regulation of Root Nodule Formation in Lotus

Author(s):  
Akihiro Suzuki
1933 ◽  
Vol 95 (2) ◽  
pp. 316-329 ◽  
Author(s):  
Keith H. Lewis ◽  
Elizabeth McCoy

Crop Science ◽  
1986 ◽  
Vol 26 (4) ◽  
pp. 719-723 ◽  
Author(s):  
Thomas M. Davis ◽  
K. W. Foster ◽  
Donald A. Phillips

2017 ◽  
Vol 84 (5) ◽  
Author(s):  
Seifeddine Ben Tekaya ◽  
Trina Guerra ◽  
David Rodriguez ◽  
Jeffrey O. Dawson ◽  
Dittmar Hahn

ABSTRACTActinorhizal plants form nitrogen-fixing root nodules in symbiosis with soil-dwelling actinobacteria within the genusFrankia, and specificFrankiataxonomic clusters nodulate plants in corresponding host infection groups. In same-soil microcosms, we observed that some host species were nodulated (Alnus glutinosa,Alnus cordata,Shepherdia argentea,Casuarina equisetifolia) while others were not (Alnus viridis,Hippophaë rhamnoides). Nodule populations were represented by eight different sequences ofnifHgene fragments. Two of these sequences characterized frankiae inS. argenteanodules, and three others characterized frankiae inA. glutinosanodules. Frankiae inA. cordatanodules were represented by five sequences, one of which was also found in nodules fromA. glutinosaandC. equisetifolia, while another was detected in nodules fromA. glutinosa. Quantitative PCR assays showed that vegetation generally increased the abundance of frankiae in soil, independently of the target gene (i.e.,nifHor the 23S rRNA gene). Targeted Illumina sequencing ofFrankia-specificnifHgene fragments detected 24 unique sequences from rhizosphere soils, 4 of which were also found in nodules, while the remaining 4 sequences in nodules were not found in soils. Seven of the 24 sequences from soils represented >90% of the reads obtained in most samples; the 2 most abundant sequences from soils were not found in root nodules, and only 2 of the sequences from soils were detected in nodules. These results demonstrate large differences between detectableFrankiapopulations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specificFrankiapopulations in soils.IMPORTANCEThe nitrogen-fixing actinobacteriumFrankiaforms root nodules on actinorhizal plants, with members of specificFrankiataxonomic clusters nodulating plants in corresponding host infection groups. We assessedFrankiadiversity in root nodules of different host plant species, and we related specific populations to the abundance and relative distribution of indigenous frankiae in rhizosphere soils. Large differences were observed between detectableFrankiapopulations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specificFrankiapopulations in soils but rather results from plants potentially selecting frankiae from the soil for root nodule formation. These data also highlight the necessity of using a combination of different assessment tools so as to adequately address methodological constraints that could produce contradictory data sets.


1993 ◽  
Vol 44 (6) ◽  
pp. 1015-1020 ◽  
Author(s):  
MAURO PEDALINO ◽  
JUDY KIPE-NOLT ◽  
LUIGI FRUSCIANTE ◽  
LUIGI MONTI

Sign in / Sign up

Export Citation Format

Share Document