lotus japonicus
Recently Published Documents


TOTAL DOCUMENTS

728
(FIVE YEARS 136)

H-INDEX

71
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Francisco Fuentes-Romero ◽  
Pilar Navarro-Gómez ◽  
Paula Ayala-García ◽  
Isamar Moyano-Bravo ◽  
Francisco-Javier López-Baena ◽  
...  

Rhizobial NodD proteins and appropriate flavonoids induce rhizobial nodulation gene expression. In this study, we show that the nodD1 gene of Sinorhizobium fredii HH103, but not the nodD2 gene, can restore the nodulation capacity of a double nodD1/nodD2 mutant of Rhizobium tropici CIAT 899 in bean plants (Phaseolus vulgaris). S. fredii HH103 only induces pseudonodules in beans. We have also studied whether the mutation of different symbiotic regulatory genes may affect the symbiotic interaction of HH103 with beans: ttsI (the positive regulator of the symbiotic type 3 protein secretion system), and nodD2, nolR and syrM (all of them controlling the level of Nod factor production). Inactivation of either nodD2, nolR or syrM, but not that of ttsI, affected positively the symbiotic behavior of HH103 with beans, leading to the formation of colonized nodules. Acetylene reduction assays showed certain levels of nitrogenase activity that were higher in the case of the nodD2 and nolR mutants. Similar results have been previously obtained by our group with the model legume Lotus japonicus. Hence, the results obtained in the present work confirm that repression of Nod factor production, provided by either NodD2, NolR or SyrM, prevents HH103 to effectively nodulate several putative host plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pramesti Istiandari ◽  
Shuhei Yasumoto ◽  
Pisanee Srisawat ◽  
Keita Tamura ◽  
Ayaka Chikugo ◽  
...  

Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-β-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takaya Tominaga ◽  
Chihiro Miura ◽  
Yuuka Sumigawa ◽  
Yukine Hirose ◽  
Katsushi Yamaguchi ◽  
...  

Morphotypes of arbuscular mycorrhizal (AM) symbiosis, Arum, Paris, and Intermediate types, are mainly determined by host plant lineages. It was reported that the phytohormone gibberellin (GA) inhibits the establishment of Arum-type AM symbiosis in legume plants. In contrast, we previously reported that GA promotes the establishment of Paris-type AM symbiosis in Eustoma grandiflorum, while suppressing Arum-type AM symbiosis in a legume model plant, Lotus japonicus. This raises a hitherto unexplored possibility that GA-mediated transcriptional reprogramming during AM symbiosis is different among plant lineages as the AM morphotypes are distinct. Here, our comparative transcriptomics revealed that several symbiosis-related genes were commonly upregulated upon AM fungal colonization in L. japonicus (Arum-type), Daucus carota (Intermediate-type), and E. grandiflorum (Paris-type). Despite of the similarities, the fungal colonization levels and the expression of symbiosis-related genes were suppressed in L. japonicus and D. carota but were promoted in E. grandiflorum in the presence of GA. Moreover, exogenous GA inhibited the expression of genes involved in biosynthetic process of the pre-symbiotic signal component, strigolactone, which resulted in the reduction of its endogenous accumulation in L. japonicus and E. grandiflorum. Additionally, differential regulation of genes involved in sugar metabolism suggested that disaccharides metabolized in AM roots would be different between L. japonicus and D. carota/E. grandiflorum. Therefore, this study uncovered the conserved transcriptional responses during mycorrhization regardless of the distinct AM morphotype. Meanwhile, we also found diverse responses to GA among phylogenetically distant AM host plants.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Roberto Siani ◽  
Georg Stabl ◽  
Caroline Gutjahr ◽  
Michael Schloter ◽  
Viviane Radl

Beta-proteobacteria belonging to the genus Acidovorax have been described from various environments. Many strains can interact with a range of hosts, including humans and plants, forming neutral, beneficial or detrimental associations. In the frame of this study, we investigated the genomic properties of 52 bacterial strains of the genus Acidovorax , isolated from healthy roots of Lotus japonicus, with the intent of identifying traits important for effective plant-growth promotion. Based on single-strain inoculation bioassays with L. japonicus, performed in a gnotobiotic system, we distinguished seven robust plant-growth promoting strains from strains with no significant effects on plant-growth. We showed that the genomes of the two groups differed prominently in protein families linked to sensing and transport of organic acids, production of phytohormones, as well as resistance and production of compounds with antimicrobial properties. In a second step, we compared the genomes of the tested isolates with those of plant pathogens and free-living strains of the genus Acidovorax sourced from public repositories. Our pan-genomics comparison revealed features correlated with commensal and pathogenic lifestyle. We showed that commensals and pathogens differ mostly in their ability to use plant-derived lipids and in the type of secretion-systems being present. Most free-living Acidovorax strains did not harbour any secretion-systems. Overall, our data indicate that Acidovorax strains undergo extensive adaptations to their particular lifestyle by horizontal uptake of novel genetic information and loss of unnecessary genes.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12110
Author(s):  
Ana B. Menéndez ◽  
Oscar Adolfo Ruiz

Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.


2021 ◽  
Author(s):  
Francesco Venice ◽  
Matteo Chialva ◽  
Guido Domingo ◽  
Mara Novero ◽  
Andrea Carpentieri ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ivette García-Soto ◽  
Raphael Boussageon ◽  
Yareni Marlene Cruz-Farfán ◽  
Jesus Daniel Castro-Chilpa ◽  
Liz Xochiquetzal Hernández-Cerezo ◽  
...  

Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus. In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1, decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jieshun Lin ◽  
Yuda Purwana Roswanjaya ◽  
Wouter Kohlen ◽  
Jens Stougaard ◽  
Dugald Reid

AbstractLegumes balance nitrogen acquisition from soil nitrate with symbiotic nitrogen fixation. Nitrogen fixation requires establishment of a new organ, which is a cytokinin dependent developmental process in the root. We found cytokinin biosynthesis is a central integrator, balancing nitrate signalling with symbiotic acquired nitrogen. Low nitrate conditions provide a permissive state for induction of cytokinin by symbiotic signalling and thus nodule development. In contrast, high nitrate is inhibitory to cytokinin accumulation and nodule establishment in the root zone susceptible to nodule formation. This reduction of symbiotic cytokinin accumulation was further exacerbated in cytokinin biosynthesis mutants, which display hypersensitivity to nitrate inhibition of nodule development, maturation and nitrogen fixation. Consistent with this, cytokinin application rescues nodulation and nitrogen fixation of biosynthesis mutants in a concentration dependent manner. These inhibitory impacts of nitrate on symbiosis occur in a Nlp1 and Nlp4 dependent manner and contrast with the positive influence of nitrate on cytokinin biosynthesis that occurs in species that do not form symbiotic root nodules. Altogether this shows that legumes, as exemplified by Lotus japonicus, have evolved a different cytokinin response to nitrate compared to non-legumes.


2021 ◽  
Author(s):  
Ma Peijie+ ◽  
Li Yajiao+ ◽  
Shu Jianhong ◽  
Wang Ziyuan ◽  
Chen Xi ◽  
...  

Abstract BackgroundLotus japonicus is a perennial herb in Leguminosae. It is a good feed source and improves soil. It is also an excellent honey source and medicinal plant. Low-phosphorus and drought stresses are among the main abiotic stress factors limiting the production of pulse roots. MethodsIn this experiment, the effects of low-phosphorus and drought stresses on Baimai roots were analyzed under three treatments: control (zl1), low-phosphorus stress (zl2) and drought stress (zl3). Results A total of 2176, 3026 and 2980 differentially expressed genes were screened in zl1 vs. zl2, zl1 vs. zl3 and zl2 vs. zl3, respectively. The differentially expressed genes were enriched in functions related to cells, membranes, ion binding, enzyme activity and resistance to low-phosphorus and drought stresses. The enriched KEGG pathways included the MAPK signaling pathway-plant, flavor biosynthesis, starch and sucrose metabolism and plant hormone signal transmission. In particular, a large number of differentially expressed genes were enriched in the response to plant hormone signal transmission pathways among different treatments, and gene expression changes were analyzed. In addition, the differentially expressed genes identified under drought stress and the phase response genes identified under osmotic stress were upregulated. Differential metabolites were mainly enriched in the important metabolic pathways of flavonoid biosynthesis, arginine and proline metabolism and starch and sucrose metabolism. Differentially expressed proteins were mainly enriched in GO terms related to cell, membrane, ion binding and enzyme activity functions, and the main enriched KEGG pathways included the ribosome, starch and sucrose metabolism and plant hormone signal transmission pathways. ConclusionIn conclusion, these results of transcriptome, metabolome and proteome sequencing are helpful for understanding the response mechanisms, gene changes, metabolite changes and protein changes in Baimai roots under low-phosphorus and drought stress conditions to lay a foundation for future research on Lotus japonicus.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Du ◽  
Shanwei Luo ◽  
Jian Zhao ◽  
Zhuo Feng ◽  
Xia Chen ◽  
...  

Abstract Background Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. Results A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. Conclusion So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.


Sign in / Sign up

Export Citation Format

Share Document