host infection
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 148)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Tina I Bui ◽  
Ann Lindley Gill ◽  
Robert A Mooney ◽  
Steven R Gill

Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber, oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling post-infection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (TNF-α) and chemokines (IP-10, KC, MIG, MCP-1, and RANTES), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice mice, with notable increases in the anti-inflammatory bacterium, Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D.


2022 ◽  
Author(s):  
Yuhan Kong ◽  
Qi Du ◽  
Juan Li ◽  
Hang Xing

The diverse surface interactions and functions of a bacterium play an important role in cell signaling, host infection, and colony formation. To understand and synthetically control biological functions of individual...


2021 ◽  
Author(s):  
Evan John ◽  
Kar-Chun Tan ◽  
Richard Peter Oliver ◽  
Karam Singh

Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, controlling development and virulence in plant pathogenic fungi. Recent research has established regulatory roles for several taxonomically conserved fungal TFs, but the evolution of specific virulence regulators is not well understood. This study sought to explore the representation of TFs across a taxonomically-diverse range of fungi, with a focus on plant pathogens. A significant trend was observed among the obligate, host-associated pathogens, which possess a reduced overall TF repertoire, alluding to a lack of pressure for maintaining diversity. A novel orthology-based analysis is then presented that refined TF classifications, traditionally based on the nature of the DNA-binding domains. Using this analysis, cases of TF over/underrepresentation across fungal pathogen lineages are systematically highlighted. Specific examples are then explored and discussed that included the TF orthologues of Ste12, Pf2 and EBR1, plus phytotoxic secondary-metabolite cluster regulators, which all presented novel and distinct evolutionary insights. Ultimately, as the examples presented demonstrate, this resource can be interrogated to guide functional studies that seek to characterise virulence-specific regulators and shed light on the factors underpinning plant pathogenicity.


mBio ◽  
2021 ◽  
Author(s):  
Gunjan Arora ◽  
Andaleeb Sajid ◽  
Yu-Min Chuang ◽  
Yuemei Dong ◽  
Akash Gupta ◽  
...  

Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components.


Author(s):  
Jinghua Xu ◽  
Jiuqing Wang ◽  
Aijun Liu ◽  
Yanqing Zhang ◽  
Xiang Gao

Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection.


2021 ◽  
Author(s):  
Jonathan M Labriola ◽  
Shane Miersch ◽  
Gang Chen ◽  
Chao Chen ◽  
Alevtina Pavlenco ◽  
...  

The COVID-19 pandemic has been exacerbated by the emergence of variants of concern (VoCs). Many VoC mutations are found in the viral spike protein (S-protein), and are thus implicated in host infection and response to therapeutics. Bivalent neutralizing antibodies (nAbs) targeting the S-protein receptor-binding domain (RBD) are promising therapeutics for COVID-19, but are limited due to low potency and vulnerability to RBD mutations found in VoCs. To address these issues, we used naive phage-displayed peptide libraries to isolate and optimize 16-residue peptides that bind to the RBD or the N-terminal domain (NTD) of the S-protein. We fused these peptides to the N-terminus of a moderate affinity nAb to generate tetravalent peptide-IgG fusions, and showed that both classes of peptides were able to improve affinities for the S-protein trimer by >100-fold (apparent KD <1 pM). Critically, cell-based infection assays with a panel of six SARS-CoV-2 variants demonstrate that an RBD-binding peptide was able to enhance the neutralization potency of a high-affinity nAb >100-fold. Moreover, this peptide-IgG was able to neutralize variants that were resistant to the same nAb in the bivalent IgG format. To show that this approach is general, we fused the same peptide to a clinically approved nAb drug, and showed that it rescued neutralization against a resistant variant. Taken together, these results establish minimal peptide fusions as a modular means to greatly enhance affinities, potencies, and breadth of coverage of nAbs as therapeutics for SARS-CoV-2.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12287
Author(s):  
Trevor L. Hewitt ◽  
Amanda E. Haponski ◽  
Diarmaid Ó. Foighil

North American watersheds contain a high diversity of freshwater mussels (Unionoida). During the long-lived, benthic phase of their life cycle, up to 40 species can co-occur in a single riffle and there is typically little evidence for major differences in their feeding ecology or microhabitat partitioning. In contrast, their brief parasitic larval phase involves the infection of a wide diversity of fish hosts and female mussels have evolved a spectrum of adaptations for infecting host fish with their offspring. Many species use a passive broadcast strategy: placing high numbers of larvae in the water column and relying on chance encounters with potential hosts. Many other species, including most members of the Lampsilini, have a proactive strategy that entails the use of prey-mimetic lures to change the behavior of the hosts, i.e., eliciting a feeding response through which they become infected. Two main lure types are collectively produced: mantle tissue lures (on the female’s body) and brood lures, containing infective larvae, that are released into the external environment. In this study, we used a phylogenomic approach (ddRAD-seq) to place the diversity of infection strategies used by 54 North American lampsiline mussels into an evolutionary context. Ancestral state reconstruction recovered evidence for the early evolution of mantle lures in this clade, with brood lures and broadcast infection strategies both being independently derived twice. The most common infection strategy, occurring in our largest ingroup clade, is a mixed one in which mimetic mantle lures are apparently the predominant infection mechanism, but gravid females also release simple, non-mimetic brood lures at the end of the season. This mixed infection strategy clade shows some evidence of an increase in diversification rate and most members use centrarchids (Micropterus & Lepomis spp.) as their predominant fish hosts. Broad linkage between infection strategies and predominant fish host genera is also seen in other lampsiline clades: worm-like mantle lures of Toxolasma spp. with sunfish (Lepomis spp.); insect larvae-like brood lures (Ptychobranchus spp.), or mantle lures (Medionidus spp., Obovaria spp.), or mantle lures combined with host capture (Epioblasma spp.) with a spectrum of darter (Etheostoma & Percina spp.) and sculpin (Cottus spp.) hosts, and tethered brood lures (Hamiota spp.) with bass (Micropterus spp.). Our phylogenetic results confirm that discrete lampsiline mussel clades exhibit considerable specialization in the primary fish host clades their larvae parasitize, and in the host infection strategies they employ to do so. They are also consistent with the hypothesis that larval resource partitioning of fish hosts is an important factor in maintaining species diversity in mussel assemblages. We conclude that, taking their larval ecology and host-infection mechanisms into account, lampsiline mussels may be legitimately viewed as an adaptive radiation.


Author(s):  
Shanti Narayanasamy ◽  
Adam R Williams ◽  
Wiley A Schell ◽  
Rebekah W Moehring ◽  
Barbara D Alexander ◽  
...  

Abstract We report the first case of Curvularia alcornii aortic pseudoaneurysm following bioprosthetic aortic valve replacement in an immunocompetent host. Infection was complicated by septic emboli to multiple organs. Despite aggressive surgical intervention and antifungal therapy, infection progressed. We review the literature on invasive Curvularia infection to inform diagnosis and management.


2021 ◽  
Author(s):  
Richard Hamelin ◽  
Guillaume Bilodeau ◽  
Renate Heinzelmann ◽  
Kelly Hrywkiw ◽  
Arnaud Capron ◽  
...  

Abstract Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide1, hampering the provision of essential ecosystem services such as carbon sequestration and water purification2. Hybridization is a major evolutionary force that can drive the emergence of pathogens3. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. Sexual recombination has never been reported in this pathogen under natural conditions and laboratory crosses have yielded unfit progenies, suggesting postzygotic barriers to hybridization. Here we report the discovery in a plant nursery of novel variants of P. ramorum that are the result of homoploid hybridization via sexual recombination between North American and European lineages of the pathogen. We show that these hybrids are viable, can infect plants and produce spores for long-term survival and propagation. Genome sequencing revealed novel genotypic combinations, not present in the parental lineages, at 54,515 single nucleotide polymorphism loci. More than 6000 of the novel genotypes at these loci are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect novel variants and inform management and control.


mSphere ◽  
2021 ◽  
Author(s):  
Yukihiro Hiramatsu ◽  
Takashi Nishida ◽  
Dendi Krisna Nugraha ◽  
Fuminori Sugihara ◽  
Yasuhiko Horiguchi

In addition to the Gram-negative bacterium Bordetella pertussis , the etiological agent of pertussis, Bordetella parapertussis also causes respiratory infection in humans, with a mild pertussis-like disease. These bacteria are genetically closely related and share many virulence factors, including adhesins and toxins.


Sign in / Sign up

Export Citation Format

Share Document