Discrete Fracture-Vug Network Model

Author(s):  
Jun Yao ◽  
Zhao-Qin Huang
2011 ◽  
Vol 9 (1) ◽  
pp. 180-204 ◽  
Author(s):  
Zhaoqin Huang ◽  
Jun Yao ◽  
Yajun Li ◽  
Chenchen Wang ◽  
Xinrui Lv

AbstractA numerical procedure for the evaluation of equivalent permeability tensor for fractured vuggy porous media is presented. At first we proposed a new conceptual model, i.e., discrete fracture-vug network model, to model the realistic fluid flow in fractured vuggy porous medium on fine scale. This new model consists of three systems: rock matrix system, fractures system, and vugs system. The fractures and vugs are embedded in porous rock, and the isolated vugs could be connected via discrete fracture network. The flow in porous rock and fractures follows Darcy’s law, and the vugs system is free fluid region. Based on two-scale homogenization theory, we obtained an equivalent macroscopic Darcy’s law on coarse scale from fine-scale discrete fracture-vug network model. A finite element numerical formulation for homogenization equations is developed. The method is verified through application to a periodic model problem and then is applied to the calculation of equivalent permeability tensor of porous media with complex fracture-vug networks. The applicability and validity of the method for these more general fractured vuggy systems are assessed through a simple test of the coarse-scale model.


2020 ◽  
Vol 140 ◽  
pp. 104155 ◽  
Author(s):  
H. Barcelona ◽  
R. Maffucci ◽  
D. Yagupsky ◽  
M. Senger ◽  
S. Bigi

Chemosphere ◽  
2021 ◽  
Vol 266 ◽  
pp. 129010
Author(s):  
Shengyang Feng ◽  
Yurong Wu ◽  
Yong Liu ◽  
Xiangyang Li ◽  
Xiaodong Wang ◽  
...  

2020 ◽  
Author(s):  
Mohammadreza Jalali ◽  
Zhen Fang ◽  
Pooya Hamdi

<p>The presence of fractures and discontinuities in the intact rock affects the hydraulic, thermal, chemical and mechanical behavior of the underground structures. Various techniques have been developed to provide information on the spatial distribution of these complex features. LIDAR, for instance, could provide a 2D fracture network model of the outcrop, Geophysical borehole logs such as OPTV and ATV can be used to investigate 1D geometrical data (i.e. dip and dip direction, aperture) of the intersected fractures, and seismic survey can mainly offer a large structure distribution of the deep structures. The ability to combine all the existing data collected from various resources and different scales to construct a 3D discrete fracture network (DFN) model of the rock mass allows to adequately represent the physical behavior of the interested subsurface structure.</p><p>In this study, an effort on the construction of such a 3D DFN model is carried out via combination of various structural and hydrogeological data collected in fractured crystalline rock. During the pre-characterization phase of the In-situ Stimulation and Circulation (ISC) experiment [Amann et al., 2018] at the Grimsel Test Site (GTS) in central Switzerland, a comprehensive characterization campaign was carried out to better understand the hydromechanical characteristics of the existing structures. The collected multiscale and multidisciplinary data such as OPTV, ATV, hydraulic packer testing and solute tracer tests [Jalali et al., 2018; Krietsch et al., 2018] are combined, analyzed and interpreted to form a combined stochastic and deterministic DFN model using the FracMan software [Golder Associates, 2017]. For further validation of the model, the results from in-situ hydraulic tests are used to compare the simulated and measured hydraulic responses, allowing to evaluate whether the simulated model could reasonably represent the characteristics of the fracture network in the ISC experiment.</p><p> </p><p><strong>References</strong></p><ul><li>Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, M., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M.O., Loew, S., Driesner, T., Maurer, H., Giardini, D., 2018. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 9, 115–137.</li> <li>Golder Associates, 2017. FracMan User Documentation.  Golder Associates Inc, Redmond WA.</li> <li>Krietsch, H., Doetsch, J., Dutler, N., Jalali, M., Gischig, V., Loew, S., Amann, F., 2018. Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments. Scientific Data 5, 180269.</li> <li>Jalali, M., Klepikova, M., Doetsch, J., Krietsch, H., Brixel, B., Dutler, N., Gischig, V., Amann, F., 2018. A Multi-Scale Approach to Identify and Characterize the Preferential Flow Paths of a Fractured Crystalline Rock. Presented at the 2<sup>nd</sup> International Discrete Fracture Network Engineering Conference, American Rock Mechanics Association.</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document