equivalent permeability
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 3)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Shen ◽  
Zhifang Zhou ◽  
Meng Chen ◽  
Zhe Wang ◽  
Yabing Li

The interlayer shear weakness zone (ISWZ) is a special structural plane with different widths and spacing in stratified rock masses, it has higher permeability compared with surrounding rocks which is a risk factor for the safety of the hydropower station project. The high-pressure packer test (HPPT) by step injection is always applied to characterize the permeability of ISWZ. However, the non-Darcian flow is easy to appear under high pressure, which makes the Darcy law model no longer applicable. In this study, two non-Darcian flow analytical methods for confined aquifer were proposed to investigate the non-Darcian flow permeability parameters. The equivalent permeability coefficients of different non-Darcian models were derived as well. The in situ tests were conducted on the ISWZs at the Baihetan hydropower station to verify the proposed methods. The results indicate that the flow is non-Darcian flow in the test section from integrity to destruction during the whole HPPT process. Izbash’s law has a better fit than Forchheimer’s law in this complicated test situation. The equivalent permeability coefficients after destruction are one or two orders of magnitude larger than those before. Meanwhile, it is necessary to pay attention to the increased difference of two expressions of the equivalent permeability coefficients under higher gradient (i) or velocity (v). In general, these methods can be used to evaluate the characteristic of ISWZ to analyze the impact on engineering stability.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5488
Author(s):  
Leidy Laura Alvarez ◽  
Leonardo José do Nascimento Guimarães ◽  
Igor Fernandes Gomes ◽  
Leila Beserra ◽  
Leonardo Cabral Pereira ◽  
...  

Fluid flow modeling of naturally fractured reservoirs remains a challenge because of the complex nature of fracture systems controlled by various chemical and physical phenomena. A discrete fracture network (DFN) model represents an approach to capturing the relationship of fractures in a fracture system. Topology represents the connectivity aspect of the fracture planes, which have a fundamental role in flow simulation in geomaterials involving fractures and the rock matrix. Therefore, one of the most-used methods to treat fractured reservoirs is the double porosity-double permeability model. This approach requires the shape factor calculation, a key parameter used to determine the effects of coupled fracture-matrix fluid flow on the mass transfer between different domains. This paper presents a numerical investigation that aimed to evaluate the impact of fracture topology on the shape factor and equivalent permeability through hydraulic connectivity (f). This study was based on numerical simulations of flow performed in discrete fracture network (DFN) models embedded in finite element meshes (FEM). Modeled cases represent four hypothetical examples of fractured media and three real scenarios extracted from a Brazilian pre-salt carbonate reservoir model. We have compared the results of the numerical simulations with data obtained using Oda’s analytical model and Oda’s correction approach, considering the hydraulic connectivity f. The simulations showed that the equivalent permeability and the shape factor are strongly influenced by the hydraulic connectivity (f) in synthetic scenarios for X and Y-node topological patterns, which showed the higher value for f (0.81) and more expressive values for upscaled permeability (kx-node = 0.1151 and ky-node = 0.1153) and shape factor (25.6 and 14.5), respectively. We have shown that the analytical methods are not efficient for estimating the equivalent permeability of the fractured medium, including when these methods were corrected using topological aspects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yueli Feng ◽  
Yuetian Liu ◽  
Gang Lei

In order to investigate the stress-sensitive characteristics of fracture networks under reservoir actual stress condition and its influence on the seepage in fractured porous media, we carried out permeability tests on experimental models with fracture networks under constant-volume boundary condition. In addition, a novel analytical stress-dependent permeability model of fracture networks in different directions was derived. Based on the test results and the proposed analytical model, the effects of various parameters (e.g., initial fracture aperture, fluid pressure, rock elastic modulus, effective-stress coefficient, and fracture dip) on deformation characteristics of fracture networks and the corresponding permeability tensor of fracture networks were studied. The research results show that, for a fractured porous media with a single group of fractures, the principal value of permeability is always parallel to the fracture-development direction. With increasing effective stress, the principal value of permeability decreases; however, the principal value direction remains unchanged. Moreover, for the fractured porous media with multiple sets of fractures, the principal direction of equivalent permeability will be inclined to the fractures with larger fracture aperture. Specifically, for the fractured porous media with two sets of intersecting fractures, the principal direction of equivalent permeability is parallel to the angular bisector of these two sets of intersecting fractures. Furthermore, the greater the difference of the fracture aperture change rate under effective stress, the more obvious the deviation of the permeability principal direction. The derived analytical model is of great theoretical and scientific significance to deepen the understanding of the stress-sensitive permeability of fractured reservoirs.


Author(s):  
Wenzhuo Cao ◽  
Qinghua Lei ◽  
Wu Cai

AbstractThe deformation and permeability of coal are largely affected by the presence and distribution of natural fractures such as cleats and bedding planes with orthogonal and abutting characteristics, resulting in distinct hydromechanical responses to stress loading during coal mining processes. In this research, a two-dimensional (2D) fracture network is constructed based on a real coal cleat trace data collected from the Fukang mine area, China. Realistic multi-stage stress loading is designed to sequentially mimic an initial equilibrium phase and a mining-induced perturbation phase involving an increase of axial stress and a decrease of confining stress. The geomechanical and hydrological behaviour of the fractured coal under various stress loading conditions is modelled using a finite element model, which can simulate the deformation of coal matrix, the shearing and dilatancy of coal cleats, the variation of cleat aperture induced by combined effects of closure/opening, and shear and tensile-induced damage. The influence of different excavation stress paths and directions of mining is further investigated. The simulation results illustrate correlated variations among the shear-induced cleat dilation, damage in coal matrix, and equivalent permeability of the fractured coal. Model results are compared with results of previous work based on conventional approaches in which natural fracture networks are not explicitly represented. In particular, the numerical model reproduces the evolution of equivalent permeability under the competing influence of the effective stress perpendicular to cleats and shear-induced cleat dilation and associated damage. Model results also indicate that coal mining at low stress rates is conducive to the stability of surrounding coal seams, and that coal mining in parallel to cleat directions is desirable. The research findings of this paper have important implications for efficient and safe exploitation of coal and coalbed methane resources.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhenlong Zhao ◽  
Hongwen Jing ◽  
Guangping Fu ◽  
Qian Yin ◽  
Xinshuai Shi ◽  
...  

The stability and safety of underground rock mass engineering are closely related to the permeability process of fluids and permeability properties of rocks. To reveal the flow behavior of fluid in thermal damaged rock, first, a rock seepage testing system was applied to study the permeability properties of red sandstone specimens after different high-temperature treatments from 200 to 800°C under different confining pressures of 10 to 30 MPa. Meanwhile, the microstructures of the red sandstone specimens were characterized by the mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Then, the permeability process of pore water pressure and the flow form of fluid also were investigated by the numerical modeling method. The results show that the permeability properties of red sandstone specimens after high-temperature exposure follow linear Darcy’s law, and the relation between confining pressures and equivalent permeability coefficient ( K 0   ) can be described by a power function. Besides, the phenomenon that microscopic structural deterioration is intensified with increasing temperature and the average pore size and porosity of the red sandstone specimens are both power functions is related to the equivalent permeability coefficient. Furthermore, the results of numerical modeling indicated that the flow field within the range affected by confining pressures gradually becomes stable and orderly from disorder, and flow lines of the fluid become smooth and straight, and perpendicular to the isosurface of pore water pressure as time goes by. Moreover, the nonlinear correlation between pore water pressure and seepage path length changes to a linear correlation, which is consistent with linear Darcy’s law.


2021 ◽  
Vol 11 (4) ◽  
pp. 1855-1863
Author(s):  
Debin Xia ◽  
Zhengming Yang ◽  
Daolun Li ◽  
Yapu Zhang ◽  
Xinli Zhao ◽  
...  

AbstractVolume transformation technology has become a key technology for developing low-permeability/tight oil and gas reservoirs. Evaluating the post-fracturing effect is very important for the development plan formulation and fracturing plan evaluation. In this paper, the vicinity of the main fracture is divided into the main fracture zone and the secondary fracture zone. The main fracture with infinite conductivity and the branch fracture with increased permeability are used to describe the transformation area. Based on this physical model, a numerical model considering the nonlinear seepage characteristics of the reservoir, stress sensitivity, wellbore storage and skin effects was established. Based on this numerical model, a comprehensive evaluation method for the fracturing effect of volume modification of vertical wells based on well test data and production data was established and this method was applied to three typical vertical wells. The results show that conventional vertical fracturing vertical wells can only form a single primary fracture and the range of equivalent permeability increase is very small. Volume fracturing can form a fracture network composed of primary fractures and secondary fractures, and increase the equivalent permeability of the fracture network area. The fracture half-length, equivalent permeability and reconstruction area of the volume fracturing well are dynamically changing and gradually decrease with the increase in production time and the fracturing effect becomes weak until it fails.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bowen Liu ◽  
Junbin Chen ◽  
Xinpin Ding

According to the relationship between permeability and porosity of geotechnical materials, a finite element model representing pore and solid particles is generated randomly according to the porosity of a given finite element calculation model. According to Darcy’s law of flow distribution and steady seepage in the finite element random simulation section, the equivalent permeability coefficients at different porosities are calculated, and the relationship between the equivalent permeability coefficient and the porosity of rock and soil is studied. The results show that the equivalent permeability coefficient is proportional to the porosity with the same pore size. In order to study the seepage characteristics of structural planes of nonmaterial geotechnical materials in different strata contact zones, the formulas for calculating the deformation parameters and permeability coefficients of heterogeneous rock masses with single nonmaterial geotechnical materials are deduced theoretically, and the correctness and applicability of the formulas are verified by experiments. The rock mass sample selected in this paper is granite, which is simulated and analyzed by sandstone in the experiment. The results show that the permeability coefficients of coarse sandstone, fine sandstone, and heterogeneous rock mass are different under the same water pressure and confining pressure. This shows that the lithology on both sides of the nonmaterial geotechnical material surface has a significant influence on the permeability of the nonmaterial geotechnical material rock mass; the permeability coefficient of the nonmaterial geotechnical material rock mass decreases with the increase of confining pressure, the numerical change is limited to a certain confining pressure range, and the permeability coefficient tends to be stable when the confining pressure reaches a certain value. Comparing the theoretical calculation value of permeability coefficient of rock mass with the experimental result, it is found that the two values are in good agreement, which indicates the correctness and applicability of the theoretical calculation formula of permeability coefficient of rock mass of single intangible geotechnical material.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.


Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119409
Author(s):  
De-yuan Wang ◽  
Pi-qiang Tan ◽  
Lei Zhu ◽  
Yin-huan Wang ◽  
Zhi-yuan Hu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaolin Wang ◽  
Liyuan Yu ◽  
Hanqing Yang

The equivalent permeability of fractured rock masses plays an important role in understanding the fluid flow and solute transport properties in underground engineering, yet the effective predictive models have not been proposed. This study established mathematical expressions to link permeability of 2D fracture networks to the geometric properties of fractured rock masses, including number density of fracture lines, total length of fractures per square meter, and fractal dimensions of fracture network structures and intersections. The results show that the equivalent permeability has power law relationships with the geometric properties of fracture networks. The fractal dimensions that can be easily obtained from an engineering site can be used to predict the permeability of a rock fracture network. When the fractal dimensions of fracture network structures and intersections exceed the critical values, the effect of randomness of fracture locations is negligible. The equivalent permeability of a fracture network increases with the increment of fracture density and/or fractal dimensions proportionally.


Sign in / Sign up

Export Citation Format

Share Document