A Cognitive and Formal Terminology for Descriptive Parameters in Concurrent Real-Time Distributed Software Systems

Author(s):  
Atoosa Jalashgar
2021 ◽  
pp. 1-25
Author(s):  
A. Filippone ◽  
B. Parkes ◽  
N. Bojdo ◽  
T. Kelly

ABSTRACT Real-time flight data from the Automatic Dependent Surveillance–Broadcast (ADS-B) has been integrated, through a data interface, with a flight performance computer program to predict aviation emissions at altitude. The ADS-B, along with data from Mode-S, are then used to ‘fly’ selected long-range aircraft models (Airbus A380-841, A330-343 and A350-900) and one turboprop (ATR72). Over 2,500 flight trajectories have been processed to demonstrate the integration between databases and software systems. Emissions are calculated for altitudes greater than 3,000 feet (609m) and exclude landing and take-off cycles. This proof of concept fills a gap in the aviation emissions inventories, since it uses real-time flights and produces estimates at a very granular level. It can be used to analyse emissions of gases such as carbon dioxide ( $\mathrm{CO}_2$ ), carbon monoxide (CO), nitrogen oxides ( $\mathrm{NO}_x$ ) and water vapour on a specific route (city pair), for a specific aircraft, for an entire fleet, or on a seasonal basis. It is shown how $\mathrm{NO}_x$ and water vapour emissions concentrate around tropospheric altitudes only for long-range flights, and that the cruise range is the biggest discriminator in the absolute value of these and other exhaust emissions.


2021 ◽  
Vol 11 (12) ◽  
pp. 5685
Author(s):  
Hosam Aljihani ◽  
Fathy Eassa ◽  
Khalid Almarhabi ◽  
Abdullah Algarni ◽  
Abdulaziz Attaallah

With the rapid increase of cyberattacks that presently affect distributed software systems, cyberattacks and their consequences have become critical issues and have attracted the interest of research communities and companies to address them. Therefore, developing and improving attack detection techniques are prominent methods to defend against cyberattacks. One of the promising attack detection methods is behaviour-based attack detection methods. Practically, attack detection techniques are widely applied in distributed software systems that utilise network environments. However, there are some other challenges facing attack detection techniques, such as the immutability and reliability of the detection systems. These challenges can be overcome with promising technologies such as blockchain. Blockchain offers a concrete solution for ensuring data integrity against unauthorised modification. Hence, it improves the immutability for detection systems’ data and thus the reliability for the target systems. In this paper, we propose a design for standalone behaviour-based attack detection techniques that utilise blockchain’s functionalities to overcome the above-mentioned challenges. Additionally, we provide a validation experiment to prove our proposal in term of achieving its objectives. We argue that our proposal introduces a novel approach to develop and improve behaviour-based attack detection techniques to become more reliable for distributed software systems.


2007 ◽  
Vol 15 (3) ◽  
pp. 265-281 ◽  
Author(s):  
Naveed Arshad ◽  
Dennis Heimbigner ◽  
Alexander L. Wolf

Sign in / Sign up

Export Citation Format

Share Document