Earthquake Risk and Reduction Approaches in Bangladesh

Author(s):  
A.. S. M. Maksud Kamal
Keyword(s):  
Author(s):  
Susan Elizabeth Hough ◽  
Roger G. Bilham

Earthquakes rank among the most terrifying natural disasters faced by mankind. Out of a clear blue sky-or worse, a jet black one-comes shaking strong enough to hurl furniture across the room, human bodies out of bed, and entire houses off of their foundations. When the dust settles, the immediate aftermath of an earthquake in an urbanized society can be profound. Phone and water supplies can be disrupted for days, fires erupt, and even a small number of overpass collapses can snarl traffic for months. However, when one examines the collective responses of developed societies to major earthquake disasters in recent historic times, a somewhat surprising theme emerges: not only determination, but resilience; not only resilience, but acceptance; not only acceptance, but astonishingly, humor. Elastic rebound is one of the most basic tenets of modern earthquake science, the term that scientists use to describe the build-up and release of energy along faults. It is also the best metaphor for societal responses to major earthquakes in recent historic times. After The Earth Quakes focuses on this theme, using a number of pivotal and intriguing historic earthquakes as illustration. The book concludes with a consideration of projected future losses on an increasingly urbanized planet, including the near-certainty that a future earthquake will someday claim over a million lives. This grim prediction impels us to take steps to mitigate earthquake risk, the innately human capacity for rebound notwithstanding.


2021 ◽  
Vol 13 (9) ◽  
pp. 4905
Author(s):  
Chen Cao ◽  
Xiangbin Wu ◽  
Lizhi Yang ◽  
Qian Zhang ◽  
Xianying Wang ◽  
...  

Exploring the spatiotemporal distribution of earthquake activity, especially earthquake migration of fault systems, can greatly to understand the basic mechanics of earthquakes and the assessment of earthquake risk. By establishing a three-dimensional strike-slip fault model, to derive the stress response and fault slip along the fault under regional stress conditions. Our study helps to create a long-term, complete earthquake catalog. We modelled Long-Short Term Memory (LSTM) networks for pattern recognition of the synthetical earthquake catalog. The performance of the models was compared using the mean-square error (MSE). Our results showed clearly the application of LSTM showed a meaningful result of 0.08% in the MSE values. Our best model can predict the time and magnitude of the earthquakes with a magnitude greater than Mw = 6.5 with a similar clustering period. These results showed conclusively that applying LSTM in a spatiotemporal series prediction provides a potential application in the study of earthquake mechanics and forecasting of major earthquake events.


2021 ◽  
Vol 242 ◽  
pp. 112532
Author(s):  
Zhenhua Huang ◽  
Liping Cai ◽  
Yashica Pandey ◽  
Yong Tao ◽  
William Telone

Author(s):  
Masako Ikefuji ◽  
Roger J. A. Laeven ◽  
Jan R. Magnus ◽  
Yuan Yue

Author(s):  
Fabio Freddi ◽  
Carmine Galasso ◽  
Gemma Cremen ◽  
Andrea Dall’Asta ◽  
Luigi Di Sarno ◽  
...  

Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1070-1072 ◽  
Author(s):  
Brian E. Tucker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document