string amplitudes
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 25)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ashoke Sen

Abstract D-instanton amplitudes suffer from various infrared divergences associated with tachyonic or massless open string modes, leading to ambiguous contribution to string amplitudes. It has been shown previously that string field theory can resolve these ambiguities and lead to unambiguous expressions for D-instanton contributions to string amplitudes, except for an overall normalization constant that remains undetermined. In this paper we show that string field theory, together with the world-sheet description of the amplitudes, can also fix this normalization constant. We apply our analysis to the special case of two dimensional string theory, obtaining results in agreement with the matrix model results obtained by Balthazar, Rodriguez and Yin.


2021 ◽  
Vol 822 ◽  
pp. 136664
Author(s):  
Shigenori Seki ◽  
Tomohiko Takahashi

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Atakan Hilmi Fırat

Abstract We begin developing tools to compute off-shell string amplitudes with the recently proposed hyperbolic string vertices of Costello and Zwiebach. Exploiting the relation between a boundary value problem for Liouville’s equation and a monodromy problem for a Fuchsian equation, we construct the local coordinates around the punctures for the generalized hyperbolic three-string vertex and investigate their various limits. This vertex corresponds to the general pants diagram with three boundary geodesics of unequal lengths. We derive the conservation laws associated with such vertex and perform sample computations. We note the relevance of our construction to the calculations of the higher-order string vertices using the pants decomposition of hyperbolic Riemann surfaces.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Thiago Fleury ◽  
Lucas N. S. Martins

Abstract In any type II superstring background, the supergravity vertex operators in the pure spinor formalism are described by a gauge superfield. In this paper, we obtain for the first time an explicit expression for this superfield in an AdS5 × S5 background. Previously, the vertex operators were only known close to the boundary of AdS5 or in the minus eight picture. Our strategy for the computation was to apply eight picture raising operators in the minus eight picture vertices. In the process, a huge number of terms are generated and we have developed numerical techniques to perform intermediary simplifications. Alternatively, the same numerical techniques can be used to compute the vertices directly in the zero picture by constructing a basis of invariants and fitting for the coefficients. One motivation for constructing the vertex operators is the computation of AdS5 × S5 string amplitudes.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract We uncover a Kawai-Lewellen-Tye (KLT)-type factorization of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The winding and momentum closed string quantum numbers map respectively to the integer and fractional winding quantum numbers of open strings ending on a D-brane array localized in the compactified directions. The closed string amplitudes factorize into products of open string scattering amplitudes with the open strings ending on a D-brane configuration determined by closed string data.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 967
Author(s):  
Miriam Bocardo-Gaspar ◽  
Hugo García-Compeán ◽  
Edgar Y. López ◽  
Wilson A. Zúñiga-Galindo

This article is a survey of our recent work on the connections between Koba–Nielsen amplitudes and local zeta functions (in the sense of Gel’fand, Weil, Igusa, Sato, Bernstein, Denef, Loeser, etc.). Our research program is motivated by the fact that the p-adic strings seem to be related in some interesting ways with ordinary strings. p-Adic string amplitudes share desired characteristics with their Archimedean counterparts, such as crossing symmetry and invariance under Möbius transformations. A direct connection between p-adic amplitudes and the Archimedean ones is through the limit p→1. Gerasimov and Shatashvili studied the limit p→1 of the p-adic effective action introduced by Brekke, Freund, Olson and Witten. They showed that this limit gives rise to a boundary string field theory, which was previously proposed by Witten in the context of background independent string theory. Explicit computations in the cases of 4 and 5 points show that the Feynman amplitudes at the tree level of the Gerasimov–Shatashvili Lagrangian are related to the limit p→1 of the p-adic Koba–Nielsen amplitudes. At a mathematical level, this phenomenon is deeply connected with the topological zeta functions introduced by Denef and Loeser. A Koba–Nielsen amplitude is just a new type of local zeta function, which can be studied using embedded resolution of singularities. In this way, one shows the existence of a meromorphic continuations for the Koba–Nielsen amplitudes as functions of the kinematic parameters. The Koba–Nielsen local zeta functions are algebraic-geometric integrals that can be defined over arbitrary local fields (for instance R, C, Qp, Fp((T))), and it is completely natural to expect connections between these objects. The limit p tends to one of the Koba–Nielsen amplitudes give rise to new amplitudes which we have called Denef–Loeser amplitudes. Throughout the article, we have emphasized the explicit calculations in the cases of 4 and 5 points.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ehsan Hatefi ◽  
Per Sundell

Abstract We compute six-point string amplitudes for the scattering of one closed string Ramond-Ramond state, two tachyons and two gauge fields in the worldvolume of D-brane-anti-D-brane systems in the Type II superstring theories. From the resulting S-matrix elements, we read off the precise form of the couplings, including their exact numerical coefficients, of two tachyons and two gauge fields in the corresponding highly symmetric effective field eheory (EFT) Lagrangian in the worldvolume of D-brane-Anti-D-brane to all orders in α′, which modify and complete previous proposals. We verify that the EFT reproduces the infinite collection of stringy gauge field singularities in dual channels. Inspired by interesting similarities between the all-order highly symmetric EFTs and holographic duals of Vasiliev’s higher spin gravities à là Nilsson and Vasiliev, we make a proposal for tensionless limits of D-brane-anti-D-brane systems.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Pongwit Srisangyingcharoen ◽  
Paul Mansfield

Abstract Plahte identities are monodromy relations between open string scattering amplitudes at tree level derived from the Koba-Nielsen formula. We represent these identities by polygons in the complex plane. These diagrams make manifest the appearance of sign changes and singularities in the analytic continuation of amplitudes. They provide a geometric expression of the KLT relations between closed and open string amplitudes. We also connect the diagrams to the BCFW on-shell recursion relations and generalise them to complex momenta resulting in a relation between the complex phases of partial amplitudes.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luis F. Alday

Abstract We study non-planar correlators in $$ \mathcal{N} $$ N = 4 super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order 1/N4 and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on AdS5× S5 in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.


2021 ◽  
Vol 382 (2) ◽  
pp. 815-874
Author(s):  
Francis Brown ◽  
Clément Dupont

AbstractWe study open and closed string amplitudes at tree-level in string perturbation theory using the methods of single-valued integration which were developed in the prequel to this paper (Brown and Dupont in Single-valued integration and double copy, 2020). Using dihedral coordinates on the moduli spaces of curves of genus zero with marked points, we define a canonical regularisation of both open and closed string perturbation amplitudes at tree level, and deduce that they admit a Laurent expansion in Mandelstam variables whose coefficients are multiple zeta values (resp. single-valued multiple zeta values). Furthermore, we prove the existence of a motivic Laurent expansion whose image under the period map is the open string expansion, and whose image under the single-valued period map is the closed string expansion. This proves the recent conjecture of Stieberger that closed string amplitudes are the single-valued projections of (motivic lifts of) open string amplitudes. Finally, applying a variant of the single-valued formalism for cohomology with coefficients yields the KLT formula expressing closed string amplitudes as quadratic expressions in open string amplitudes.


Sign in / Sign up

Export Citation Format

Share Document