Multimodal Evaluation of Cerebral Oxygen Metabolism Disturbances in Patients with Severe Head Injury: Special Reference to Cerebrovascular CO2 Reactivity

Author(s):  
Toshiyuki Shiogai ◽  
Akio Noguchi ◽  
Eishi Sato ◽  
Isamu Saito
2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110029
Author(s):  
Zhang Guo ◽  
Weiwei Wang ◽  
Dahua Xie ◽  
Ruisheng Lin

Objective To investigate the effect of supplemental dexmedetomidine in interventional embolism on cerebral oxygen metabolism in patients with intracranial aneurysms. Methods Ninety patients who underwent interventional embolism of intracranial aneurysms were equally divided into Group A and Group B. In Group A, dexmedetomidine was injected intravenously 10 minutes before inducing anesthesia, with a loading dose of 0.6 µg/kg followed by 0.4 µg/kg/hour. Group B received the same amount of normal saline by the same injection method. Heart rate (HR), mean arterial pressure (MAP), arterial–jugular venous oxygen difference [D(a-jv) (O2)], cerebral oxygen extraction [CE (O2)], and intraoperative propofol use were recorded before inducing anesthesia (T0) and at five time points thereafter. Results The amount of propofol in Group A was lower vs Group B. At all five time points after T0, HR, MAP, D(a-jv) (O2), and CE (O2) in Group A were significantly lower vs Group B, with significant differences for jugular venous oxygen saturation (SjvO2) and the oxygen content of the internal jugular vein (CjvO2) between the groups. Conclusion Dexmedetomidine resulted in less intraoperative propofol, lower D(a-jv) (O2) and CE (O2), and improved cerebral oxygen metabolism.


Circulation ◽  
1956 ◽  
Vol 14 (3) ◽  
pp. 380-385 ◽  
Author(s):  
JOHN H. MOYER ◽  
GEORGE MORRIS ◽  
ROBERT PONTIUS ◽  
ROBERT HERSHBERGER ◽  
C. Polk Smith

Sign in / Sign up

Export Citation Format

Share Document