Design Optimization of Shell and Tube Heat Exchanger Using Differential Evolution Algorithm

Author(s):  
Pawan Singh ◽  
Millie Pant
Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2014 ◽  
Vol 625 ◽  
pp. 373-377 ◽  
Author(s):  
Ngo Thi Phuong Thuy ◽  
Rajashekhar Pendyala ◽  
Narahari Marneni

Reduction in energy consumption is an important task in process industry. The basic idea of heat exchanger network (HEN) is using cold streams to cool hot streams and hot streams to heat cold streams. Hence, synthesis and optimization of HEN is a main tool for improving heat recovery. This article introduces a new strategy for HEN optimization using differential evolution algorithm. The proposed method considers splitting stream at the pinch point, to minimize the total cost of the network. Primarily, the minimum approach temperature value is determined through super-targeting. Then, differential evolution is employed to specify the heat load of heat exchangers and splitting streams. The HEN structure obtained in this work has better economics and illustrates the better performance by this approach.


2011 ◽  
Vol 01 (01) ◽  
pp. 6-11 ◽  
Author(s):  
S. H. Gawande ◽  
A. A Keste ◽  
L. G Navale ◽  
M. R Nandgaonkar ◽  
V. J Sonawane ◽  
...  

Author(s):  
Lam Thuan Phat ◽  
Nguyen Nhat Phi Long ◽  
Nguyen Hoai Son ◽  
Ho Huu Vinh ◽  
Le Anh Thang

Differential Evolution (DE) is an efficient and effective algorithm recently proposed for solving optimization problems. In this paper, an improved version of Differential Evolution algorithm, called iDE, is introduced to solve design optimization problems of composite laminated beams. The beams used in this research are Timoshenko beam models computed based on analytical formula. The iDE is formed by modifying the mutation and the selection step of the original algorithm. Particularly, individuals involved in mutation were chosen by Roulette wheel selection via acceptant stochastic instead of the random selection. Meanwhile, in selection phase, the elitist operator is used for the selection progress instead of basic selection in the optimization process of the original DE algorithm. The proposed method is then applied to solve two problems of lightweight design optimization of the Timoshenko laminated composite beam with discrete variables. Numerical results obtained have been compared with those of the references and proved the effectiveness and efficiency of the proposed method. Keywords: improved Differential Evolution algorithm; Timoshenko composite laminated beam; elitist operator; Roulette wheel selection; deterministic global optimization.


Sign in / Sign up

Export Citation Format

Share Document