Modeling of Solar Wind Hybrid Renewable Energy Sources in Simulink

Author(s):  
Subash Chandra Sahoo ◽  
Bhagabat Panda ◽  
Ritesh Dash ◽  
Babita Panda ◽  
Sasmita Kar
2014 ◽  
pp. 13-17
Author(s):  
Zoltán Balla

The renewable energy sources could be used in energy production, while no or only very slightly emit harmful substances to the environment. The solar, wind, hydropower, biomass and heat rational utilization of land contributes to greenhouse gas emissions.Renewable energy sources also reduces the dependence on fossil fuels, thus contributing to increase security of supply. The creation of local jobs to strengthen the area's population retaining ability.


Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


Author(s):  
M. Suresh ◽  
R. Meenakumari

An optimal utilization of smart grid connected hybrid renewable energy sources is proposed in this paper. The hybrid technique is the combination of recurrent neural network and adaptive whale optimization algorithm plus tabu search, called AWOTS. The main objective is the RES optimum operation for decreasing the electricity production cost by hourly day-ahead and real time scheduling. Here, the load demands are predicted using AWOTS to develop the correct control signals based on power difference between source and load side. Adaptive whale optimization algorithm searching behaviour is adjusted by tabu search. The proposed technique is executed in the MATLAB/Simulink working platform. To test the performance of the proposed method, the load demand for the 24-hour time period is demonstrated. By then the power generated in the sources, such as photovoltaic, wind turbine, micro turbine and battery by the proposed technique, is analyzed and compared with existing techniques, such as genetic algorithm, particle swarm optimization and whale optimization algorithm. Furthermore, the state of charge of the battery for the 24-hour period is compared with existing techniques. Likewise, the cost of the system is compared and error in the sources also compared. The comparison results affirm that the proposed technique has less computational time (35.001703) than the existing techniques. Moreover, the proposed method is cost-effective power production of smart grid and effective utilization of renewable energy sources without wasting the available energy.


Author(s):  
P Annapandi ◽  
R Banumathi ◽  
NS Pratheeba ◽  
A Amala Manuela

In this paper, the optimal power flow management-based microgrid in hybrid renewable energy sources with hybrid proposed technique is presented. The photovoltaic, wind turbine, fuel cell and battery are also presented. The proposed technique is the combined execution of both spotted hyena optimization and elephant herding optimization. Spotted hyena optimization is utilized to optimize the combination of controller parameters based on the voltage variation. In the proposed technique, the spotted hyena optimization combined with elephant herding optimization plays out the assessment procedure to establish the exact control signals for the system and builds up the control signals for offline way in light of the power variety between source side and load side. The objective function is defined by the system data subject to equality and inequality constraints such as real and reactive power limits, power loss limit, and power balance of the system and so on. The constraint is the availability of the renewable energy sources and power demand from the load side in which the battery is used only for lighting load. By utilizing the proposed method, the power flow constraints are restored into secure limits with the reduced cost. At that point, the proposed model is executed in the Matrix Laboratory/Simulink working platform and the execution is assessed with the existing techniques. In this article, the performance analysis of proposed and existing techniques such as elephant herding optimization, particle swarm optimization, and bat algorithm are evaluated. Furthermore, the statistical analysis is also performed. The result reveals that the power flow of the hybrid renewable energy sources by the proposed method is effectively managed when compared with existing techniques.


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document