Forest-Related Climate Mitigation Options: Dialogues for Exploring Opportunities and Threats

Author(s):  
Martin Welp
2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Eoin Lees ◽  
Nick Eyre

AbstractIn April 1989, the UK Prime Minister, Margaret Thatcher, convened a full cabinet meeting on climate change addressed by leading scientists. The presentation on mitigation of carbon dioxide emissions was made by the Head of the Energy Technology Support Unit (ETSU), Ken Currie, and identified the key potential options for mitigation by 2020. In this paper, we compare the mitigation potential identified for each proposed option with the 2019 outturn. The largest mitigation options identified were improved end use energy efficiency across the economy and the generation and use of low carbon electricity. Our analysis finds that these have been the key options adopted. Reductions in primary energy use, resulting from improvements in energy efficiency were concentrated in the period 2005–2012 which in 1989 were widely considered to be ambitious. Decarbonisation of electricity has been achieved by the displacement of coal, initially by gas and more recently by renewable electricity. Renewable electricity has exceeded 1989 expectations in the last 5 years and is now the biggest source of CO2 reductions from electricity generation. The contribution envisaged by nuclear electricity has not occurred, largely due its failure to compete in liberalised generation markets. In all cases, the policy environment has been important. We draw lessons for mitigation options to achieve the goal of net zero emissions in the next 30 years. The contribution of demand side and other modular options will remain crucial, as mass-produced technologies tend to improve more quickly than those requiring large construction projects. Environmental, social and political factors will be important, so analysis should not be a purely techno-economic assessment.


Climate Law ◽  
2012 ◽  
Vol 3 (1) ◽  
pp. 49-69 ◽  
Author(s):  
Meinhard Doelle ◽  
Emily Lukaweski

The climate negotiations in Durban, South Africa, concluded seven years of international negotiations on the role of carbon capture and storage in the Clean Development Mechanism. This article considers the resulting Durban CCS rules in light of the state of CCS technologies, their place among the range of climate mitigation options, and the resulting challenges, opportunities, and uncertainties surrounding the role of CCS. Eight principles that should guide the use of CCS in the CDM are proposed, and the Durban rules are assessed against them.


2020 ◽  
Author(s):  
Garry D. Hayman ◽  
Edward Comyn-Platt ◽  
Chris Huntingford ◽  
Anna B. Harper ◽  
Tom Powell ◽  
...  

2019 ◽  
Vol 5 (4) ◽  
pp. 410-427 ◽  
Author(s):  
Ryan P. Thombs ◽  
Xiaorui Huang

The macro-comparative decoupling literature has often sought to test the arguments made by the treadmill of production (TP) and ecological modernization (EM) theories. However, due to data limitations, these studies have been limited to analyzing the years after 1960. Given that both theories discuss historical processes operating before 1960, analyzing pre-1960 data is warranted to more comprehensively test the propositions made by both theories. We assess the long-term relationship between economic growth and CO2 emissions from 1870 to 2014 using a sample of global North nations. We use Prais-Winsten regression models with time interactions to assess whether, when, and how much CO2 emissions have decoupled from economic growth over time. We find that significant relative decoupling has occurred twice since 1870: during the last 30 years of the nineteenth century, the timing of which is contrary to what both the EM and TP theories might expect, and after 1970. We also observe that the relationship remained relatively stable from the turn of the twentieth century to approximately 1970, which aligns with the arguments made by the classical TP work. We conclude that shifts in the global organization of production have shaped the magnitude of the economic growth–CO2 emissions relationship and its changes over time, which has implications for climate mitigation policy.


2019 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
Shiva Pokhrel ◽  
Chungla Sherpa

Conservation areas are originally well-known for protecting landscape features and wildlife. They are playing key role in conserving and providing a wide range of ecosystem services, social, economic and cultural benefits as well as vital places for climate mitigation and adaptation. We have analyzed decadal changes in land cover and status of vegetation cover in the conservation area using both national level available data on land use land cover (LULC) changes (1990-2010) and normalized difference vegetation index (NDVI) (2010-2018) in Annapurna conservation area. LULC showed the barren land as the most dominant land cover types in all three different time series 1990, 2000 and 2010 with followed by snow cover, grassland, forest, agriculture and water body. The highest NDVI values were observed at Southern, Southwestern and Southeastern part of conservation area consisting of forest area, shrub land and grassland while toward low to negative in the upper middle to the Northern part of the conservation area.


2017 ◽  
Vol 11 (4) ◽  
pp. 314-324
Author(s):  
C. Di Leva

2012 ◽  
Vol 7 (8) ◽  
pp. 52
Author(s):  
S. Davies
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document