Fluorescence In Situ Hybridization (FISH) – Quality Issues in Molecular Cytogenetics

Author(s):  
Thomas Liehr
Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2106
Author(s):  
Barbara Kij-Mitka ◽  
Halina Cernohorska ◽  
Svatava Kubickova ◽  
Sylwia Prochowska ◽  
Wojciech Niżański ◽  
...  

Fluorescence in situ hybridization is a molecular cytogenetics technique that enables the visualization of chromosomes in cells via fluorescently labeled molecular probes specific to selected chromosomes. Despite difficulties in carrying out the FISH technique on sperm, related to the need for proper nuclear chromatin decondensation, this technique has already been used to visualize chromosomes in human, mouse, cattle, swine, horse, and dog spermatozoa. Until now, FISH has not been performed on domestic cat sperm; therefore, the aim of this study was to visualize sex chromosomes in domestic cat sperm. The results showed the presence of X and Y chromosomes in feline spermatozoa. The procedure used for sperm decondensation and fluorescence in situ hybridization was adequate to visualize chromosomes in domestic cat spermatozoa and, in the future, it may be used to determine the degree of chromosomal abnormalities in these gametes.


Genome ◽  
2006 ◽  
Vol 49 (9) ◽  
pp. 1057-1068 ◽  
Author(s):  
Jiming Jiang ◽  
Bikram S. Gill

Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.


1999 ◽  
Vol 30 (11) ◽  
pp. 1377-1382 ◽  
Author(s):  
George Kontogeorgos ◽  
Nikiforos Kapranos ◽  
George Orphanidis ◽  
Demetrios Rologis ◽  
Eleni Kokka

Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Yuanfu Ji ◽  
Dwaine A. Raska ◽  
M. Nurul Islam-Faridi ◽  
Charles F. Crane ◽  
Michael S. Zwick ◽  
...  

The extensive use of molecular cytogenetics in human genetics and clinical diagnostics indicates that analogous applications in plants are highly feasible. One sort of application would be the identification of new aneuploids, which traditionally involves either direct karyotypic identification, which is feasible in only a few plant species, or tests with markers (cytogenetic, genetic, or molecular), which require sexual hybridization and at least one subsequent seed or plant generation. We have used meiotic fluorescence in situ hybridization (FISH) to analyze a new monosome of cotton (Gossypium hirsutum L., 2n = 4x = 52, 2(AD)1) that had a phenotype which seemed to be distinct from monosomes in the Cotton Cytogenetic Collection. Painting with A2-genome DNA revealed the monosome's D-subgenome origin. DAPI–PI staining showed that the monosome carries a major NOR, delimiting it to the major NOR-bearing chromosomes of the D-subgenome, i.e., 16 or 23. Dual-color FISH with 5S and 18S–28S rDNAs indicated that the monosome contains separate major clusters of each of these two tandemly repeated rDNA elements, thus delimiting the monosome to chromosome 23, for which the Cotton Cytogenetic Collection has previously been devoid of any sort of deficiency. Of the 26 chromosomes in the cotton genome, the Collection now provides coverage for 16 (70%) in the form of monosomy, and 20 (77%) in the form of monosomy and (or) telosomy. Use of molecular cytogenetic methods to identify a new plant aneuploid in cotton exemplifies the fact that a physicochemical karyotypic chromosome identification system is not required a priori for application of new molecular cytogenetic methods, thus indicating their potential applicability to nearly all plant species.Key words: fluorescence in situ hybridization, monosome, aneuploid, Gossypium hirsutum.


Author(s):  
Jeanne Bentley Lawrence ◽  
Kenneth C. Carter ◽  
John R. Coleman ◽  
Michael Gerdes ◽  
Carol V. Johnson ◽  
...  

Developments in fluorescence in situ hybridization accrued over recent years now make it possible to detect and precisely localize nucleic acid sequences with a sensitivity sufficient to detect single copy genes or their primary transcripts (Reviewed in Ref.1). These advances have essentially revolutionized the field of molecular cytogenetics, providing not only a powerful approach to gene mapping and genetic diagnosis, but a new way to probe the higher level organization of the nucleus and chromosome. The methodology we and others primarily utilize is based on non-isotopic labelling of DNA probes with moieties such as biotin or digoxygenin, which are detected by fluorochrome-conjugated avidin or anti-digoxygenin antibodies. Alternatively, probes directly labeled with fluorochromes have recently become available. Appropriate modifications of protocols allow either cellular DNA or RNA to be targeted, and hybridization can be to intact cells, nuclei, or chromosomes.


Sign in / Sign up

Export Citation Format

Share Document