Wall Modelling for Implicit Large Eddy Simulation of Favourable and Adverse Pressure Gradient Flows

Author(s):  
ZhenLi Chen ◽  
Antoine Devesa ◽  
Michael Meyer ◽  
Eric Lauer ◽  
Stefan Hickel ◽  
...  
2019 ◽  
Vol 866 ◽  
pp. 503-525 ◽  
Author(s):  
Racheet Matai ◽  
Paul Durbin

Turbulent flow over a series of increasingly high, two-dimensional bumps is studied by well-resolved large-eddy simulation. The mean flow and Reynolds stresses for the lowest bump are in good agreement with experimental data. The flow encounters a favourable pressure gradient over the windward side of the bump, but does not relaminarize, as is evident from near-wall fluctuations. A patch of high turbulent kinetic energy forms in the lee of the bump and extends into the wake. It originates near the surface, before flow separation, and has a significant influence on flow development. The highest bumps create a small separation bubble, whereas flow over the lowest bump does not separate. The log law is absent over the entire bump, evidencing strong disequilibrium. This dataset was created for data-driven modelling. An optimization method is used to extract fields of variables that are used in turbulence closure models. From this, it is shown how these models fail to correctly predict the behaviour of these variables near to the surface. The discrepancies extend further away from the wall in the adverse pressure gradient and recovery regions than in the favourable pressure gradient region.


2013 ◽  
Author(s):  
Michael Meyer ◽  
Stefan Hickel ◽  
Christian Breitsamter ◽  
Nikolaus Adams

Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


Sign in / Sign up

Export Citation Format

Share Document