1995 ◽  
Vol 283 ◽  
pp. 249-272 ◽  
Author(s):  
Daniel S. Park ◽  
Patrick Huerre

The temporal growth of Görtler vortices and the associated secondary instability mechanisms are investigated numerically in the case of an asymptotic suction boundary layer on a curved plate. Highly inflectional velocity profiles are generated in both the spanwise and vertical directions. The inflectional velocity profile develops earlier in the spanwise direction. There exist two distinct modes of instability that eventually lead to the breakdown of Görtler vortices: the sinuous mode and the varicose mode. The temporal secondary instability analysis of the three-dimensional inflectional velocity profile reveals that the sinuous mode becomes unstable earlier than the varicose mode. The sinuous mode is shown to be primarily related to shear in the spanwise direction, ∂U/∂z, and the varicose mode to shear in the vertical direction, ∂U/∂y.


1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.


Sign in / Sign up

Export Citation Format

Share Document