Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate

1995 ◽  
Vol 283 ◽  
pp. 249-272 ◽  
Author(s):  
Daniel S. Park ◽  
Patrick Huerre

The temporal growth of Görtler vortices and the associated secondary instability mechanisms are investigated numerically in the case of an asymptotic suction boundary layer on a curved plate. Highly inflectional velocity profiles are generated in both the spanwise and vertical directions. The inflectional velocity profile develops earlier in the spanwise direction. There exist two distinct modes of instability that eventually lead to the breakdown of Görtler vortices: the sinuous mode and the varicose mode. The temporal secondary instability analysis of the three-dimensional inflectional velocity profile reveals that the sinuous mode becomes unstable earlier than the varicose mode. The sinuous mode is shown to be primarily related to shear in the spanwise direction, ∂U/∂z, and the varicose mode to shear in the vertical direction, ∂U/∂y.

2015 ◽  
Vol 781 ◽  
pp. 388-421 ◽  
Author(s):  
Jie Ren ◽  
Song Fu

Görtler vortices developed in laminar boundary layer experience remarkable changes when the flow is subjected to compressibility effects. In the present study, five $\mathit{Ma}$ numbers, covering incompressible to hypersonic flows, at $\mathit{Ma}=0.015$, 1.5, 3.0, 4.5 and 6.0 are specified to illustrate these effects. Görtler vortices in subsonic and moderate supersonic flows ($\mathit{Ma}=0.015$, 1.5 and 3.0) are governed by the conventional wall-layer mode (mode W). In hypersonic flows ($\mathit{Ma}=4.5$, 6.0), the trapped-layer mode (mode T) becomes dominant. This difference is maintained and intensifies downstream leading to different scenarios of secondary instabilities. The linear and nonlinear development of Görtler vortices which are governed by dominant modal disturbances are investigated with direct marching of the nonlinear parabolic equations. The secondary instabilities of Görtler vortices set in when the resulting streaks are adequately developed. They are studied with Floquet theory at multiple streamwise locations. The secondary perturbations become unstable downstream following the sequence of sinuous mode type I, varicose mode and sinuous mode type II, indicating an increasing threshold amplitude. Onset conditions are determined for these modes. The above three modes can each have the largest growth rate under the right conditions. In the hypersonic cases, the threshold amplitude $A(u)$ is dramatically reduced, showing the significant impact of the thermal streaks. To investigate the parametric effect of the spanwise wavenumber, three global wavenumbers ($B=0.5$, 1.0 and $2.0\times 10^{-3}$) are specified. The relationship between the dominant mode (sinuous or varicose) and the spanwise wavenumber of Görtler vortices found in incompressible flows (Li & Malik, J. Fluid Mech., vol. 297, 1995, pp. 77–100) is shown to be not fully applicable in high-speed cases. The sinuous mode becomes the most dangerous, regardless of the spanwise wavelength when $\mathit{Ma}>3.0$. The subharmonic type can be the most dangerous mode while the detuned type can be neglected, although some of the sub-dominant secondary modes reach their peak growth rates under detuned states.


1969 ◽  
Vol 38 (3) ◽  
pp. 473-480 ◽  
Author(s):  
F. X. Wortmann

In an experimental study the development of transition downstream of Görtler vortices was investigated. With the tellurium method it was possible to distinguish beyond the Görtler vortices to successive instability modes. The first deforms the vortex pattern in a steady way and produces between each vortex pair boundary-layer profiles with two points of inflexion. When this has been established another instability mode starts, consisting of regular three-dimensional oscillations. By detailed flow visualization a nearly complete picture of the different flow patterns can be obtained.


1990 ◽  
Vol 220 ◽  
pp. 661-672 ◽  
Author(s):  
Andrew P. Bassom ◽  
Sharon O. Seddougui

Recently Hall & Seddougui (1989) considered the secondary instability of large-amplitude Görtler vortices in a growing boundary layer into a three-dimensional flow with wavy vortex boundaries. They obtained a pair of coupled, linear ordinary differential equations for this instability which constituted an eigenproblem for the wavelength and frequency of this wavy mode. In the course of investigating the nonlinear version of this problem (Seddougui & Bassom 1990), we have found that the numerical work of Hall & Seddougui (1989) is incomplete; this deficiency is rectified here. In particular, we find that many neutrally stable modes are possible; we derive the properties of such modes in a high-wavenumber limit and show that the combination of the results of Hall & Seddougui and our modifications lead to conclusions which are consistent with the available experimental observations.


2017 ◽  
Vol 829 ◽  
pp. 681-730 ◽  
Author(s):  
Dongdong Xu ◽  
Yongming Zhang ◽  
Xuesong Wu

We study the nonlinear development and secondary instability of steady and unsteady Görtler vortices which are excited by free-stream vortical disturbances (FSVD) in a boundary layer over a concave wall. The focus is on low-frequency (long-wavelength) components of FSVD, to which the boundary layer is most receptive. For simplification, FSVD are modelled by a pair of oblique modes with opposite spanwise wavenumbers $\pm k_{3}$, and their intensity is strong enough (but still of low level) that the excitation and evolution of Görtler vortices are nonlinear. For the general case that the Görtler number $G_{\unicode[STIX]{x1D6EC}}$ (based on the spanwise wavelength $\unicode[STIX]{x1D6EC}$ of the disturbances) is $O(1)$, the formation and evolution of Görtler vortices are governed by the nonlinear unsteady boundary-region equations, supplemented by appropriate upstream and far-field boundary conditions, which characterize the impact of FSVD on the boundary layer. This initial-boundary-value problem is solved numerically. FSVD excite steady and unsteady Görtler vortices, which undergo non-modal growth, modal growth and nonlinear saturation for FSVD of moderate intensity. However, for sufficiently strong FSVD the modal stage is bypassed. Nonlinear interactions cause Görtler vortices to saturate, with the saturated amplitude being independent of FSVD intensity when $G_{\unicode[STIX]{x1D6EC}}\neq 0$. The predicted modified mean-flow profiles and structure of Görtler vortices are in excellent agreement with several steady experimental measurements. As the frequency increases, the nonlinearly generated harmonic component $(0,2)$ (which has zero frequency and wavenumber $2k_{3}$) becomes larger, and as a result the Görtler vortices appear almost steady. The secondary instability analysis indicates that Görtler vortices become inviscidly unstable in the presence of FSVD with a high enough intensity. Three types of inviscid unstable modes, referred to as sinuous (odd) modes I, II and varicose (even) modes I, are identified, and their relevance is delineated. The characteristics of dominant unstable modes, including their frequency ranges and eigenfunctions, are in good agreement with experiments. The secondary instability is intermittent when FSVD are unsteady and of low frequency. However, the intermittence diminishes as the frequency increases. The present theoretical framework, which allows for a detailed and integrated description of the key transition processes, from generation, through linear and nonlinear evolution, to the onset of secondary instability, represents a useful step towards predicting the pre-transitional flow and transition itself of the boundary layer over a blade in turbomachinery.


2017 ◽  
Vol 826 ◽  
pp. 60-96 ◽  
Author(s):  
L. J. Dempsey ◽  
P. Hall ◽  
K. Deguchi

The effect of free stream coherent structures in the asymptotic suction boundary layer on the initiation of Görtler vortices is considered from both the ‘imperfect’ bifurcation and receptivity viewpoints. Firstly a weakly nonlinear and a full numerical approach are used to describe Görtler vortices in the asymptotic suction boundary layer in the absence of forcing from the free stream. It is found that interactions between different spanwise harmonics occur and lead to multiple secondary bifurcations in the fully nonlinear regime. Furthermore it is shown that centrifugal instabilities of the asymptotic suction boundary layer behave quite differently than their counterparts in either fully developed flows such as Couette flow or growing boundary layers. A significant result is that the most dangerous disturbance is found to bifurcate subcritically from the unperturbed state. Within the weakly nonlinear regime the receptivity of Görtler vortices to the free stream exact coherent structures discovered by Deguchi & Hall (J. Fluid Mech., vol. 752, 2014, pp. 602–625; J. Fluid Mech., vol. 778, 2015, pp. 451–484) is considered. The presence of free stream structures results in a resonant excitation of Görtler vortices in the main boundary layer. This leads to imperfect bifurcations reminiscent of those found by Daniels (Proc. R. Soc. Lond. A, vol. 358, 1977, pp. 173–197) and Hall & Walton (Proc. R. Soc. Lond. A, vol. 358, 1977, pp. 199–221; J. Fluid Mech., vol. 90, 1979, pp. 377–395) in the context of transition to finite amplitude Bénard convection in a bounded region. In order to understand the receptivity problem for the given flow the spatial initial value problem for this interaction is also considered when the free stream structure begins at a fixed position along the wall. Remarkably, it will be shown that free stream structures are incredibly efficient generators of Görtler vortices; indeed the induced vortices are found to be larger than the free stream structure which provokes them! The relationship between the imperfect bifurcation approach and receptivity theory is described.


Sign in / Sign up

Export Citation Format

Share Document