Thermochemical Modeling: II. Application to Ignition and Combustion of Energetic Materials

Author(s):  
Carl F. Melius
2005 ◽  
Vol 896 ◽  
Author(s):  
Steven F. Son ◽  
Timothy Foley ◽  
V. Eric Sanders ◽  
Alan Novak ◽  
Douglas Tasker ◽  
...  

AbstractMetastable Intermolecular Composite (MIC) materials are comprised of a mixture of oxidizer and fuel with particle sizes in the nanometer range. Characterizing their ignition and combustion is an ongoing effort at Los Alamos. In this paper we will present some recent studies at Los Alamos aimed at developing a better understanding of ignition and combustion of MIC materials. Ignition by impact has been studied using a laboratory gas gun using nano-aluminum (Al) and nano-tantalum (Ta) as the reducing agent and bismuth (III) oxide (Bi2O3) as the oxidant. As expected from the chemical potential, the Al containing composites gave higher peak pressures. It was found, for the Al/Bi2O3 system, that impact velocity under observed conditions plays no role in the pressure output until approximately 100 m/s, below which speed, impact energy is insufficient to ignite the reaction. This makes the experiment more useful in evaluating the reactive performance. Replacing the atmosphere on impact with an inert gas reduced both the amount of light produced and the realized peak pressure. The combustion of low-density MIC powders has also been studied. To better understand the reaction mechanisms of burning MIC materials, dynamic electrical conductivity measurements have been performed on a MIC material for the first time. Simultaneous optical measurements of the wave front position have shown that the reaction and conduction fronts are coincident within 160 μm.


The chemical processes involved in the decomposition and combustion of energetic materials have been investigated theoretically using quantum chemical methods to determine the thermochemistry and reaction pathways. The Bond-Additivity-Corrected Moller-Plesset fourth-order perturbation theory method (BAC-MP4) has been used to determine heats of formation and free energies of reaction intermediates of decomposition and combustion. In addition, the BAC-MP4 method has been used to determine reaction pathways involving these intermediates. A theoretical method for calculating solvation energies has been developed to treat the non-idealities of high pressure and the condensed phase. The resulting chemical processes involving decomposition, ignition and combustion are presented for nitramines and nitromethane. Differences in decomposition mechanisms for the condensed phase and gas phase are discussed. In addition, we discuss the effects that amines can have on the initial stages of condensed-phase nitromethane decomposition. Bond dissociation energies for nitro-triazoles are compared with those of other nitro compounds.


1992 ◽  
Vol 28 (6) ◽  
pp. 608-611
Author(s):  
I. V. Kondakov ◽  
V. V. Shaposhnikov ◽  
B. G. Loboiko

Sign in / Sign up

Export Citation Format

Share Document