gas gun
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 51)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Thuy-Tien Nguyen ◽  
John Breeze ◽  
Spyros D Masouros

Abstract Energised fragments from explosive devices have been the most common mechanism of injury to both military personnel and civilians in recent conflicts and terrorist attacks. Fragments that penetrate into the thoracic cavity are strongly associated with death due to the inherent vulnerability of the underlying structures. The aim of this study was to investigate the impact of fragment-simulating projectiles (FSPs) to tissues of the thorax in order to identify the thresholds of impact velocity for perforation through these tissues and the resultant residual velocity of the FSPs. A gas-gun system was used to launch 0.78-g cylindrical and 1.13-g spherical FSPs at intact porcine thoracic tissues from different impact locations. The sternum and rib bones were the most resistant to perforation, followed by the scapula and intercostal muscle. For both FSPs, residual velocity following perforation was linearly proportional to impact velocity. These findings can be used in the development of numerical tools for predicting the medical outcome of explosive events, which in turn can inform the design of public infrastructure, of personal protection, and of medical emergency response.


2021 ◽  
Author(s):  
Pavel P. Khramtsov

This chapter introduces new approach of hypersonic flow generation and experimental study of hypersonic flows over cones with half- angles τ1 = 3◦ and τ2 = 12◦. Mach number of the of the incident flow was M1 = 18. Visualization of the flow structure was made by the schlieren method. Straight Foucault knife was located in the focal plane of the receiving part of a shadow device. Registration of shadow patterns was carried out using high- speed camera Photron Fastcam (300 000 fps) with an exposure time of 1 μs. The Mach number on the cone was calculated from inclination angle of shock wave in the shadowgraph.


2021 ◽  
pp. 131483
Author(s):  
Zhiwei Yan ◽  
Zhe Zhou ◽  
Lin Wang ◽  
Xuefeng Xu

Author(s):  
Danish Iqbal ◽  
Vikrant Tiwari

Detailed experimental and numerical investigations were carried out for evaluating the dynamic response of the stacked target plates toward moderate (100–250 m/s) velocity projectile impact. A single stage gas gun was utilized to launch the hemispherical and the blunt projectile toward two different hetro-stacked configurations (Al-St and St-Al). A comprehensive experimental (high speed 3D-DIC) and numerical (FE) evaluation was conducted to obtain the transient and post-impact behavior of the target plates. Influence of different projectile shapes on the full-field transient deformation profiles of different stacking configurations was studied in detail. Also, typical perforation parameters like plug size, shape, and perforation hole diameters were carefully measured and analyzed. A comprehensive error measure was utilized to quantify the similarity between the experimental and simulation results, a very good agreement was observed.


2021 ◽  
Author(s):  
D. MUNIRAJ ◽  
S. MUGHILARASAN ◽  
V. M. SREEHARI

Composite plays a significant role in the field of aerospace due to its excellent mechanical properties, nevertheless, they are highly susceptible to out-of-plane impact load. Fibre-reinforced composite fails effortlessly under impact load and absorb energy through damage mechanics rather than deformation. The present study investigates the damage behaviour of the CNT reinforced carbon fibre-epoxy composite under high velocity impact using single stage gas gun. Composite plates were fabricated with 0 to 0.6 weight percentage content of CNT as reinforcement using vacuum assisted resin transfer moulding. A series of impact test with various impact energy was carried out on carbon/epoxy composite plate to study the impact performance. From the experimentation it was observed that the 0.3 weight percentage CNT addition provides the optimum impact performance. Damage characterization was performed for various impact velocity based on the micro and macro scale damage area. Knowledge of the damage behaviour of CNT reinforced carbon fibreepoxy composite plate under high velocity impact loads is essential for both the product development and material selection in the aerospace application.


2021 ◽  
Author(s):  
KHARI HARRISON ◽  
KALYAN RAJ KOTA ◽  
JACOB A. ROGERS ◽  
PAUL T. MEAD ◽  
ANIKET MOTE ◽  
...  

In this study, hypervelocity impact experiments were performed on both unstitched and through-thickness Vectran™-stitched laminates. Both laminate types were fabricated from DMS-2436 class-72 warp-knit multiaxial carbon fabric, infused with API-1078 resin using a Controlled Atmospheric Pressure Resin Infusion (CAPRI) process. The laminates were impacted by 4 mm diameter, spherical, Nylon 6/6 projectiles at nominal velocities of 4 km/s using a two-stage light gas gun. The primary measures of the performance of the composite at protecting against impact were in plane hole damage areal comparisons and the comparison of the target back-face debris cloud (BFDC) velocities relative to the incoming projectile velocities. Additional post-shot forensics include characterization of damage morphology and analysis of high-speed videos. Initial inferences about the damage produced in the laminate indicate that the Vectran™ stitching can effectively arrest in-plane damage propagation; impacts at or near a stitchline resulted in no damage propagation across the stitchline boundaries.


2021 ◽  
Vol 118 (37) ◽  
pp. e2106197118
Author(s):  
James S. New ◽  
Bahar Kazemi ◽  
Vassilia Spathis ◽  
Mark C. Price ◽  
Richard A. Mathies ◽  
...  

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s−1 up to 3 km ⋅ s−1. Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s−1. Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level—a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4268
Author(s):  
Maciej Klosak ◽  
Rafael Santiago ◽  
Tomasz Jankowiak ◽  
Amine Bendarma ◽  
Alexis Rusinek ◽  
...  

In this paper, perforation experiments were carried out and numerically modelled in order to analyze the response of 2024-T3 aluminum alloy plates under different initial temperatures T0. This alloy has a particular relevance since it is widely used as a structural component in aircrafts, but it is also interesting for other sectors of industry. A gas gun projectile launcher was used to perform impacts within initial velocities V0 from 40 m/s to 120 m/s and at temperatures varying from 293 K to 573 K. A temperature softening of the material was observed which was manifested in the reduction in the ballistic limit by 10% within the temperature range studied. Changes in the material failure mode were also observed at different test conditions. Additionally, a finite element model was developed to predict the material response at high velocities and to confirm the temperature softening that was observed experimentally. An optimization of the failure criterion resulted in a reliable model for such mild aluminum alloys. The results reported here may be used for different applications in the automotive and military sectors.


Author(s):  
Marie Arnika Gärtner ◽  
Matthias Ebert ◽  
Martin Schimmerohn ◽  
Stefan Hergarten ◽  
Frank Schäfer ◽  
...  

ABSTRACT The earliest ejection process of impact cratering involves very high pressures and temperatures and causes near-surface material to be ejected faster than the initial impact velocity. On Earth, such material may be found hundreds to even thousands of kilometers away from the source crater as tektites. The mechanism yielding such great distances is not yet fully understood. Hypervelocity impact experiments give insights into this process, particularly as the technology necessary to record such rapid events in high temporal and spatial resolution has recently become available. To analyze the earliest stage of this hypervelocity process, two series of experiments were conducted with a two-stage light-gas gun, one using aluminum and the other using quartzite as target material. The vertical impacts of this study were recorded with a high-speed video camera at a temporal resolution of tens of nanoseconds for the first three microseconds after the projectile’s contact with the target. The images show a self-luminous, ellipsoidal vapor cloud expanding uprange. In order to obtain angle-resolved velocities of the expanding cloud, its entire front and the structure of the cloud were systematically investigated. The ejected material showed higher velocities at high angles to the target surface than at small angles, providing a possible explanation for the immense extent of the strewn fields.


Author(s):  
Е. С. Онучин ◽  
◽  
В. А. Фельдштейн ◽  
Н. А. Товарнова ◽  
Л. Б. Васильченко ◽  
...  

Space orbital stations operations support consists an adoption of meaningful measures to protect space station against impacts of space debris and meteoroids. This goal can be reached by using multilayered protection shields that are made with the fabric material layers. Shields designing and modeling requires specific characteristics that define energy absorbed volume by the fabric destruction under impact. The paper describes the methodology and experimental determination method for absorbed energy volume results by using multilayer fabrics of orbital manned stations shielding constructions under distributed impulse loading caused by the space debris impacts. The energy absorbed volume by the multilayer fabrics is obtained from the experiments by analysis of specimen and flat metal projectile impact. Projectile was accelerated by the air gas gun. The obtained experimental determination results of energy absorbed volume in pressure range up to 1,5 GPa are given. Using the model of fabric as a porous material its energy absorption volume dependence in pressure range up to 10 GPa and compared with experimental data. It is shown that for materials with high porosity absorbed energy volume against pressure dependence is close to linear. Corresponding asymptotic dependence for materials with high porosity under the high pressure is obtained.


Sign in / Sign up

Export Citation Format

Share Document