energetic material
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 131)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Sebastian Yocca ◽  
Matthias Zeller ◽  
Edward Byrd ◽  
Davin Piercey

5-amino-1-benzyloxytetrazole was aminated with O-tosylhydroxylamine. The diaminobenzyloxytetrazolium intermediate was debenzylated to yield the highly energetic 1,5-diaminotetrazole-4N-oxide (SYX-9). The molecule underwent both chemical and energetic characterization, including 15N NMR spectroscopy and...


2021 ◽  
Vol 68 (4) ◽  
pp. 930-944
Author(s):  
Kübra Gürpınar ◽  
Yaprak Gürsoy Tuncer ◽  
Ş. Betül Sopacı ◽  
M. Abdulkadir Akay ◽  
Hasan Nazır ◽  
...  

Three new nitrogen-rich energetic compounds, N-(5-chloro-2,4-dinitrophenyl)hydrazine (1), N-(5-chloro-2,4-dinitrophenyl) guanidine (2) and N-(5-chloro-2,4-dinitrophenyl)-4-aminopyrazole (3) prepared by the nucleophilic substitution reaction of 1,3-dichloro-4,6-dinitrobenzene with hydrazine, guanidinium carbonate and 4-aminopyrazole. The compounds were characterized by 1H NMR, 13C NMR, IR and mass spectroscopy. Only compound 2 could be prepared in a suitable crystal and molecular model was determined by X-ray analysis. Compounds were investigated by TG and DSC. Thermal degradation and thermokinetic behavior were investigated by Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose techniques. Compounds were observed to be prone to exothermical thermal decomposition. HOMO and LUMO levels, theoretical formation enthalpy and electrostatic maps were calculated by Gaussian09. The detonation velocity and pressure were calculated by Kamlet–Jacobs equation. The compounds were assayed for antimicrobial properties.


Author(s):  
Yu-teng Cao ◽  
Zi-wu Cai ◽  
Jun-hao Shi ◽  
Qing-hua Zhang ◽  
Yu Liu ◽  
...  

2021 ◽  
Vol 570 ◽  
pp. 151187
Author(s):  
Pengfei Tang ◽  
Wenkun Zhu ◽  
Zhiqiang Qiao ◽  
Guangcheng Yang ◽  
Xiaodong Li ◽  
...  

Author(s):  
Hervé Trumel ◽  
François Willot ◽  
Thomas Peyres ◽  
Maxime Biessy ◽  
François Rabette

The works deals with a macroscopically isotropic energetic material based on triamino-trinitrobenzene (TATB) crystals bonded with a small volume fraction of a thermoplastic polymer. This material is shown experimentally to display an irreversible thermal expansion behavior characterized by dilatancy and variations of its thermal expansion coefficient when heated or cooled outside a narrow reversibility temperature range. The analysis of cooling results suggests the existence of residual stresses in the initial state, attributed to the manufacturing process. Microstructure-level FFT computations including the very strong anisotropic thermoelastic TATB crystal response and temperature-dependent binder plasticity, show that strong internal stresses develop in the disoriented crystals under thermal load, either heating or cooling. Upon cooling, binder plastic yielding in hindered, thus promoting essentially brittle microcracking, while it is favored upon heating. Despite its low volume fraction, the role of the binder is essential, its plastic yielding causing stress redistribution and residual stresses upon cooling back to ambient.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6831
Author(s):  
Tianming Li ◽  
Junyu Fan ◽  
Zhuoran Wang ◽  
Hanhan Qi ◽  
Yan Su ◽  
...  

The 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a newly energetic material with an excellent performance and low sensitivity and has attracted considerable attention. On the basis of the dispersion-corrected density functional theory (DFT-D), the high-pressure responses of vibrational properties, in conjunction with structural properties, are used to understand its intermolecular interactions and anisotropic properties under hydrostatic and uniaxial compressions. At ambient and pressure conditions, the DFT-D scheme could reasonably describe the structural parameters of LLM-105. The hydrogen bond network, resembling a parallelogram shape, links two adjacent molecules and contributes to the structure stability under hydrostatic compression. The anisotropy of LLM-105 is pronounced, especially for Raman spectra under uniaxial compression. Specifically, the red-shifts of modes are obtained for [100] and [010] compressions, which are caused by the pressure-induced enhance of the strength of the hydrogen bonds. Importantly, coupling modes and discontinuous Raman shifts are observed along [010] and [001] compressions, which are related to the intramolecular vibrational redistribution and possible structural transformations under uniaxial compressions. Overall, the detailed knowledge of the high-pressure responses of LLM-105 is established from the atomistic level. Uniaxial compression responses provide useful insights for realistic shock conditions.


Sign in / Sign up

Export Citation Format

Share Document