Analyses of Shear-Wall Panels With a Composite Plasticity Model

Author(s):  
Peter H. Feenstra ◽  
Rene Borst ◽  
Jan G. Rots
PCI Journal ◽  
1989 ◽  
Vol 34 (2) ◽  
pp. 104-120 ◽  
Author(s):  
Sarni H. Rizkalla ◽  
Reynaud L. Serrette ◽  
J. Scott Heuvel ◽  
Emmanuel K. Attiogbe

PCI Journal ◽  
1996 ◽  
Vol 41 (3) ◽  
pp. 64-80 ◽  
Author(s):  
Khaled A. Soudki ◽  
Jeffrey S. West ◽  
Sami H. Rizkalla ◽  
Bruce Blackett

2021 ◽  
Vol 176 ◽  
pp. 106430
Author(s):  
M. Nithyadharan ◽  
V. Kalyanaraman
Keyword(s):  

2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940002 ◽  
Author(s):  
Yao Chen ◽  
Qian Zhang ◽  
Jian Feng ◽  
Zhe Zhang

This study presents shear resistance of precast reinforced concrete (RC) shear walls. A novel assembling method for upper and lower wall panels is proposed, whereas vertical steel bars are grouped into bundles and effectively connected in preformed holes. To evaluate the feasibility and shear resistance of such a connection method, three specimens of precast shear walls with different horizontal steel bars have been constructed and tested under monotonic loading while subjected to a constant vertical compression. The results show that cracks mainly appear under the line that connects the midpoint of tension side and the corner of the compression side. The weak section of these shear walls is at the top of the preformed holes, and through cracks do not appear at the bottom of walls. These innovative precast shear walls are reliable, and no rebar is pulled out or seriously slipped. The yield load of the shear wall is great, and the stage between yield and failure is satisfactory. The bearing capacity declines slowly after the peak value.


1979 ◽  
Vol 67 (1) ◽  
pp. 237-245
Author(s):  
RH WOOD ◽  
PAC SIMS ◽  
RJ MAINSTONE ◽  
DGE SMITH ◽  

Sign in / Sign up

Export Citation Format

Share Document