shear resistance
Recently Published Documents


TOTAL DOCUMENTS

897
(FIVE YEARS 261)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 46 ◽  
pp. 103788
Author(s):  
Jaroslav Halvonik ◽  
Jana Kalická ◽  
Lucia Majtánová ◽  
Mária Minárová

2022 ◽  
Vol 190 ◽  
pp. 107117
Author(s):  
Kevin E. Augustyn ◽  
Spencer E. Quiel ◽  
Maria E.M. Garlock

2022 ◽  
Vol 253 ◽  
pp. 113671
Author(s):  
Victor Hugo Dalosto de Oliveira ◽  
Henrique Jorge Nery de Lima ◽  
Guilherme Sales Melo

Author(s):  
Daniel J. Bull ◽  
Joel A. Smethurst ◽  
Gerrit J. Meijer ◽  
I. Sinclair ◽  
Fabrice Pierron ◽  
...  

Vegetation enhances soil shearing resistance through water uptake and root reinforcement. Analytical models for soils reinforced with roots rely on input parameters that are difficult to measure, leading to widely varying predictions of behaviour. The opaque heterogeneous nature of rooted soils results in complex soil–root interaction mechanisms that cannot easily be quantified. The authors measured, for the first time, the shear resistance and deformations of fallow, willow-rooted and gorse-rooted soils during direct shear using X-ray computed tomography and digital volume correlation. Both species caused an increase in shear zone thickness, both initially and as shear progressed. Shear zone thickness peaked at up to 35 mm, often close to the thickest roots and towards the centre of the column. Root extension during shear was 10–30% less than the tri-linear root profile assumed in a Waldron-type model, owing to root curvature. Root analogues used to explore the root–soil interface behaviour suggested that root lateral branches play an important role in anchoring the roots. The Waldron-type model was modified to incorporate non-uniform shear zone thickness and growth, and accurately predicted the observed, up to sevenfold, increase in shear resistance of root-reinforced soil.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


2021 ◽  
Vol 9 (3) ◽  
pp. 122-132
Author(s):  
Elias Santos Souza ◽  
Nilton de Souza Campelo ◽  
Raimundo Humberto Cavalcante Lima ◽  
René Levy Aguiar

In many rivers of the Amazon, mainly along the Amazon River, the phenomenon of "fallen land" occurs at the time of the rivers' ebb, causing the erosion of river banks, resulting in major social and economic problems. The influence of saturation/percolation of soil layers on the shear resistance of the affected massifs is unknown. Thus, the main objective of the characterization and geotechnical modelling of these slopes is to determine the shear strength of the affected massifs. For this purpose, deformed and undeformed samples were collected from the various layers of the soil massif in a location where the phenomenon was under development. These samples were characterized physically, chemically, and mechanically. Subsequently, the massifs were recreated in reduced scale models, observing the critical conditions in which the disaster occurred, and qualitatively comparing them with slope stability computational models. The results showed that the layers are classified as silty and sandy soils, with a small fraction of clay, and that there are three types of movements associated with the fallen soils: the fall, overturning, and rotational landslide, all actively influenced by the effects of the river's ebb, saturation/percolation, and texture.


2021 ◽  
Vol 16 (59) ◽  
pp. 254-264
Author(s):  
Anh-Tuan Vu ◽  
Ngoc-Duc Han ◽  
Kien Nguyen ◽  
Dinh-Hoa Nguyen

To reduce the depth of floor-beam structures and to save the cost of headed-shear studs, many types of shallow composite beam have been developed during the last few years. Among them, the shallow-hollow steel beam consists of web openings, infilled with in-situ concrete (named concrete dowel) has been increasingly focused recently. In this new kind of structure, this concrete dowel plays an important role as the principal shear connector. This article presents an investigation on the shear transferring mechanism and failure behavior of the trapezoid shape concrete dowel. An experimental campaign of static push-out tests has been conducted with variability in the number of web openings (WOs). The results indicate that the mechanical behavior of concrete dowel could be divided into crushing, compression, and tension zones and exhibits brittle behavior. The longitudinal shear resistance and specimen's stiffness are strongly affected by the number of considered WOs


2021 ◽  
Vol 11 (6) ◽  
pp. 7853-7860
Author(s):  
A. A. Abdulhussein ◽  
M. H. Al-Sherrawi

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased by 41 to 77% when steel collars were used. The experimental results were in good agreement with the numerical analysis acquired with the ABAQUS software.


2021 ◽  
Author(s):  
Jin-Seok Choi ◽  
Won Jong Chin ◽  
Tian-Feng Yuan ◽  
Young-Soo Yoon

Abstract A bridge bearing anchor transmits various loads of a superstructure to a substructure. However, most anchors are generally designed without consideration of characteristics such as concrete pedestal, grout bedding, and anchor socket. Therefore, this study investigated the shear behavior of anchors in accordance with the edge distance, embedment depth, compressive strength of concrete, and height of the concrete pedestal in order to simulate the practical characteristics of the bridge bearing anchors. The actual shear capacity of the anchor differs from the shear strength calculated by the ACI 318 Code; especially, the importance of the embedment depth is underestimated in the code. An increase in the height of the concrete pedestal has a negative effect on the shear capacity because of the stress concentration. The grout is fractured prior to the occurrence of local damages in concrete, resulting in a secondary moment. As a result, the effect of the level arm is observed. An equation, which can predict the relative cracking degree of concrete, is proposed by analyzing the displacement of grout and concrete. High strain occurs in the stirrups close to the anchor, and the behavior of the strain is more influenced by the embedment depth than the edge distance. Finally, the design equation of concrete breakout strength is modified to predict the more precise shear resistance of a bridge bearing anchor.


Sign in / Sign up

Export Citation Format

Share Document