On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface

Author(s):  
Y. P. Tang ◽  
D. G. Clark
2007 ◽  
Vol 586 ◽  
pp. 371-396 ◽  
Author(s):  
MASAHITO ASAI ◽  
YASUFUMI KONISHI ◽  
YUKI OIZUMI ◽  
MICHIO NISHIOKA

Two-dimensional local wall suction is applied to a fully developed turbulent boundary layer such that near-wall turbulence structures are completely sucked out, but most of the turbulent vortices in the original outer layer can survive the suction and cause the resulting laminar flow to undergo re-transition. This enables us to observe and clarify the whole process by which the suction-surviving strong vortical motions give rise to near-wall low-speed streaks and eventually generate wall turbulence. Hot-wire and particle image velocimetry (PIV) measurements show that low-frequency velocity fluctuations, which are markedly suppressed near the wall by the local wall suction, soon start to grow downstream of the suction. The growth of low-frequency fluctuations is algebraic. This characterizes the streak growth caused by the suction-surviving turbulent vortices. The low-speed streaks obtain almost the same spanwise spacing as that of the original turbulent boundary layer without the suction even in the initial stage of the streak development. This indicates that the suction-surviving turbulent vortices are efficient in exciting the necessary ingredients for the wall turbulence, namely, low-speed streaks of the correct scale. After attaining near-saturation, the low-speed streaks soon undergo sinuous instability to lead to re-transition. Flow visualization shows that the streak instability and its subsequent breakdown occur at random in space and time in spite of the spanwise arrangement of streaks being almost periodic. Even under the high-intensity turbulence conditions, the sinuous instability amplifies disturbances of almost the same wavelength as predicted from the linear stability theory, though the actual growth is in the form of a wave packet with not more than two waves. It should be emphasized that the mean velocity develops the log-law profile as the streak breakdown proceeds. The transient growth and eventual breakdown of low-speed streaks are also discussed in connection with the critical condition for the wall-turbulence generation.


2002 ◽  
Vol 467 ◽  
pp. 41-56 ◽  
Author(s):  
GAETANO MARIA DI CICCA ◽  
GAETANO IUSO ◽  
PIER GIORGIO SPAZZINI ◽  
MICHELE ONORATO

Particle image velocimetry has been applied to the study of a canonical turbulent boundary layer and to a turbulent boundary layer forced by transversal wall oscillations. This work is part of the research programme at the Politecnico di Torino aerodynamic laboratory with the objective of investigating the response of near-wall turbulence to external perturbations. Results are presented for the optimum oscillation period of 100 viscous time units and for an oscillation amplitude of 320 viscous units. As expected, turbulent velocity fluctuations are considerably reduced by the wall oscillations. Particle image velocimetry has allowed comparisons between the canonical and forced flows in an attempt to find the physical mechanisms by which the wall oscillation influences the near-wall organized motions.


1989 ◽  
Vol 208 ◽  
pp. 417-458 ◽  
Author(s):  
Kwing-So Choi

A detailed wind tunnel study has been carried out on the near-wall turbulence structure over smooth and riblet wall surfaces under zero pressure gradient. Time-average quantities as ‘well as conditionally sampled profiles were obtained using hotwire/film anemometry, along with a simultaneous flow visualization using the smoke-wire technique and a sheet of laser light. The experimental results indicated a significant change of the structure in the turbulent boundary layer near the riblet surface. The change was confined within a small volume of the flow close to the wall surface. A conceptual model for the sequence of the bursts was then proposed based on an extensive study of the flow visualization, and was supported by the results of conditionally sampled velocity fields. A possible mechanism of turbulent drag reduction by riblets is discussed.


2004 ◽  
Vol 127 (2) ◽  
pp. 219-232 ◽  
Author(s):  
M. Candries ◽  
M. Atlar

Turbulent boundary-layer measurements have been carried out on flat surfaces coated with two different new generation marine antifoulings. The coatings were applied on 1-m-long test sections that were fitted in a 2.1-m-long flat plate setup. The measurements were carried out in two different recirculating water tunnels by means of two-component laser Doppler velocimetry and were compared with measurements of a smooth steel reference surface and a surface covered with sand grit. Both coatings exhibited an increase in frictional resistance compared to the reference surface, but the increase was significantly smaller for the Foul(ing) Release coatings than for the Tin-free SPC coating. The coatings did not significantly affect the boundary-layer thickness. When expressed in inner variables, the coatings did not have an effect on the turbulence intensity profiles, but when expressed in outer variables, the coatings affected the near-wall turbulence intensities.


Sign in / Sign up

Export Citation Format

Share Document