laser doppler velocimetry
Recently Published Documents


TOTAL DOCUMENTS

697
(FIVE YEARS 36)

H-INDEX

42
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1330
Author(s):  
Sylvio Freitas ◽  
Frank Harms ◽  
Bernd Leitl

With the aim of ascertaining the effects of the widths (A) of valleys on near-surface turbulence, flows over an isolated symmetric three-dimensional valley of constant depth (H) and slopes are characterized in a large-boundary-layer wind tunnel. Starting at A = 4H, valley widths were systematically varied to A = 12H with constant increments of 2H. High-resolution laser-Doppler velocimetry measurements were made at several equivalent locations above each of the resulting valley geometries and compared with data from undisturbed flows over flat terrain. Flow separation caused by the first ridges generated inner-valley recirculation bubbles with lengths dependent on the valley widths. Secondary recirculation zones were also observed downstream from the crests of the second ridges. Results show that the width modifications exert the strongest effects on turbulence within the valleys and the vicinities of the second ridges. Above these locations, maximal magnitudes of turbulence are generally found for the larger width geometries. Furthermore, lateral turbulence overpowers the longitudinal counterparts nearest to the surface, with maximal gains occurring for the smaller widths. Our data indicate that valley widths are impactful on near-surface flows and should be considered together with other more established geometric parameters of influence.


2021 ◽  
Vol 1909 (1) ◽  
pp. 012075
Author(s):  
Daisuke Sugiyama ◽  
Asuma Ichinose ◽  
Tomoki Takeda ◽  
Kazuyoshi Miyagawa ◽  
Hideyo Negishi ◽  
...  

2021 ◽  
Vol 483 ◽  
pp. 126607
Author(s):  
Tomoki Tajiri ◽  
Tomoaki Kyoden ◽  
Shunsuke Akiguchi ◽  
Tsugunobu Andoh ◽  
Tadashi Hachiga

Author(s):  
David Saltzman ◽  
Stephen Lynch

Abstract Metal additive manufacturing (AM) of heat exchanger enables custom and conformal designs for a wide range of applications. However, one challenge with metal AM is the resultant surface roughness formed when using this process which is non-existent during traditional manufacturing processes. The goal in this study is to explore how this roughness impacts the pressure drop and flow field of a commonly used heat exchanger surface called an offset strip fin (OSF). Two OSF of the same geometry are tested: one with an average fin roughness of 34 µm from metal AM and the other with an average fin roughness 2.5 µm, used as a baseline. The roughness from the metal AM process increased pressure losses and transitioned the flow to turbulent-like behavior at lower Reynolds numbers when compared with the smooth fin. Laser Doppler Velocimetry (LDV) measurements captured the row number in the fin array where transition from laminar to turbulent-like flow occurred. The location of transition from low to high turbulence levels occurred earlier in the fin array as the Reynolds number was increased for the smooth and rough fins. Wake profiles of time-averaged axial velocity were similar between the rough and smooth fins, with the rough fins having higher levels of turbulence intensity and less symmetric wake profiles. Overall, this study indicates that a pressure loss penalty is associated with using metal AM OSF due to the resultant surface roughness and an earlier transition to turbulent-like flow.


Sign in / Sign up

Export Citation Format

Share Document