First-Order Classical Logic

Author(s):  
Jean Goubault-Larrecq ◽  
Ian Mackie
Keyword(s):  
1965 ◽  
Vol 25 ◽  
pp. 59-86 ◽  
Author(s):  
Katuzi Ono

A common feature of formal theories is that each theory has its own system of axioms described in terms of some symbols for its primitive notions together with logical symbols. Each of these theories is developed by deduction from its axiom system in a certain logical system which is usually the classical logic of the first order.


1970 ◽  
Vol 35 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Melvin Fitting

There are well-known embeddings of intuitionistic logic into S4 and of classical logic into S5. In this paper we give a related embedding of (first order) classical logic directly into (first order) S4, with or without the Barcan formula. If one reads the necessity operator of S4 as ‘provable’, the translation may be roughly stated as: truth may be replaced by provable consistency. A proper statement will be found below. The proof is based ultimately on the notion of complete sequences used in Cohen's technique of forcing [1], and is given in terms of Kripke's model theory [3], [4].


2008 ◽  
Vol 1 (3) ◽  
pp. 267-304 ◽  
Author(s):  
DOV GABBAY ◽  
ODINALDO RODRIGUES ◽  
ALESSANDRA RUSSO

In this article, we propose a belief revision approach for families of (non-classical) logics whose semantics are first-order axiomatisable. Given any such (non-classical) logic $L$, the approach enables the definition of belief revision operators for $L$, in terms of a belief revision operation satisfying the postulates for revision theory proposed by Alchourrón, Gärdenfors and Makinson (AGM revision, Alchourrón et al. (1985)). The approach is illustrated by considering the modal logic K, Belnap's four-valued logic, and Łukasiewicz's many-valued logic. In addition, we present a general methodology to translate algebraic logics into classical logic. For the examples provided, we analyse in what circumstances the properties of the AGM revision are preserved and discuss the advantages of the approach from both theoretical and practical viewpoints.


1993 ◽  
Vol 58 (3) ◽  
pp. 800-823 ◽  
Author(s):  
D. M. Gabbay ◽  
V. B. Shehtman

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following typeφ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.


2018 ◽  
Vol 29 (1) ◽  
pp. 157-184
Author(s):  
Jacopo Amidei ◽  
Uri Andrews ◽  
Duccio Pianigiani ◽  
Luca San Mauro ◽  
Andrea Sorbi

AbstractThis paper is part of a project that is based on the notion of a dialectical system, introduced by Magari as a way of capturing trial and error mathematics. In Amidei et al. (2016, Rev. Symb. Logic, 9, 1–26) and Amidei et al. (2016, Rev. Symb. Logic, 9, 299–324), we investigated the expressive and computational power of dialectical systems, and we compared them to a new class of systems, that of quasi-dialectical systems, that enrich Magari’s systems with a natural mechanism of revision. In the present paper we consider a third class of systems, that of $p$-dialectical systems, that naturally combine features coming from the two other cases. We prove several results about $p$-dialectical systems and the sets that they represent. Then we focus on the completions of first-order theories. In doing so, we consider systems with connectives, i.e. systems that encode the rules of classical logic. We show that any consistent system with connectives represents the completion of a given theory. We prove that dialectical and $q$-dialectical systems coincide with respect to the completions that they can represent. Yet, $p$-dialectical systems are more powerful; we exhibit a $p$-dialectical system representing a completion of Peano Arithmetic that is neither dialectical nor $q$-dialectical.


1995 ◽  
Vol 60 (3) ◽  
pp. 861-878 ◽  
Author(s):  
Giovanni Sambin

Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules, ex falso quodlibet or double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, including the usual, or structured, intuitionistic and classical logic. Such a proof clearly illustrates the fact that stronger set-theoretic principles and classical metalogic are necessary only when completeness is sought with respect to a special class of models, such as the usual two-valued models.To make the paper self-contained, I briefly review in §1 the definition of pretopologies; §2 deals with syntax and §3 with semantics. The completeness proof in §4, though similar in structure, is sensibly simpler than that in [S], and this is why it is given in detail. In §5 it is shown how little is needed to obtain completeness for extensions of BL in the same language. Finally, in §6 connections with proofs with respect to more traditional semantics are briefly investigated, and some open problems are put forward.


Sign in / Sign up

Export Citation Format

Share Document