Scaling Laws in the Consolidation of Powder Compacts

Author(s):  
A. Casagranda ◽  
P. Sofronis
Keyword(s):  
Author(s):  
Saeed Z. Chavoshi ◽  
Vito L. Tagarielli ◽  
Zhusheng Shi ◽  
Jianguo Lin ◽  
Shuyun Wang ◽  
...  

Abstract This paper presents predictions of the mechanical response of sintered FGH96 Ni-based superalloy powder compacts at high temperatures, obtained by the analysis of 3D representative volume elements generated by both X-ray tomography and a virtual technique. The response of the material to a multi-axial state of stress/strain for porosities as large as 0.3 is explored, obtaining the yield surfaces and their evolution as well as scaling laws for both elastic and plastic properties. The two modeling approaches are found in good agreement. The sensitivity of the predictions to particle size, inter-particle friction, applied strain rate, and boundary conditions is also examined.


1997 ◽  
Vol 45 (11) ◽  
pp. 4835-4845 ◽  
Author(s):  
A. Casagranda ◽  
P. Sofronis
Keyword(s):  

1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


1993 ◽  
Vol 3 (10) ◽  
pp. 2041-2062 ◽  
Author(s):  
M. J. Thill ◽  
H. J. Hilhorst

2000 ◽  
Vol 627 ◽  
Author(s):  
Prabhu R. Nott ◽  
K. Kesava Rao ◽  
L. Srinivasa Mohan

ABSTRACTThe slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1669-1671
Author(s):  
A. Tabiei ◽  
J. Sun ◽  
G. J. Simitses

Sign in / Sign up

Export Citation Format

Share Document