field variable
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 165
Author(s):  
Huw Morgan

Abstract Improved space weather diagnostics depend critically on improving our understanding of the evolution of the slow solar wind in the streamer belts near the Sun. Recent innovations in tomography techniques are opening a new window on this complex environment. In this work, a new time-dependent technique is applied to COR2A/Solar Terrestrial Relations Observatory observations from a period near solar minimum (2018 November 11) for heliocentric distances of 4–8 R ⊙. For the first time, we find density variations of large amplitude throughout the quiescent streamer belt, ranging between 50% and 150% of the mean density, on timescales of tens of hours to days. Good agreement is found with Parker Solar Probe measurements at perihelion; thus, the variations revealed by tomography must form a major component of the slow solar wind variability, distinct from coronal mass ejections or smaller transients. A comparison of time series at different heights reveals a consistent time lag, so that changes at 4 R ⊙ occur later at increasing height, corresponding to an outward propagation speed of around 100 km s−1. This speed may correspond to either the plasma sound speed or the bulk outflow speed depending on an important question: are the density variations caused by the spatial movement of a narrow streamer belt (moving magnetic field, constant plasma density), or changes in plasma density within a nonmoving streamer belt (rigid magnetic field, variable density), or a combination of both?


2021 ◽  
Vol 2113 (1) ◽  
pp. 012013
Author(s):  
Yanli Li ◽  
Junhang Guo

Abstract The smoothed particle hydrodynamics (SPH) is widely used in numerical simulations as a kind of meshless method. The particles are used to represent object, which is a fully Lagrangian modeling scheme without the need to define a spatial mesh so it can simulate large deformation. The classic post process method cannot visualize the simulation results smoothly, so a novel post processing method is proposed in this paper. By developing a program, the coordinates and field variables of particles were collected to a file. Using the kernel function, the field variable on a specified slice plane was interpolated. By developing a program, the simulation results have been rendered smoothly. This method is illustrated by a penetration example in this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Soufien Belhaj ◽  
Brahim Ben-Beya

Purpose This study aims to analyze entropy generation and magnetohydrodynamic (MHD) natural convection of hybrid nanofluid in a square cavity, with a heated elliptical block placed at the center, in presence of a periodic-variable magnetic field. Design/methodology/approach In this paper, simulations were performed with a FORTRAN home code. The numerical methodology used to solve Navier–Stokes, energy and entropy generation equations with corresponding boundary conditions, is essentially based on the finite volume method and full multigrid acceleration. Findings The cavity is filled with Ag–Tio2/Water hybrid nanofluid. The main objective of this investigation is to predict the effects of body’s size (6 cases), type of applied magnetic field (variable or uniform), the non-dimensional period number of the variable magnetic field (VMF) (0.2 ≤ Λ ≤ 0.8), the inclination angle of the VMF (0 ≤ χ ≤ 90), Rayleigh number (5 × 103 ≤ Ra ≥ 105) and Hartmann number (5 ≤ Ha ≥ 100) on thermal performance, heat transfer rate, entropy generation and flow patterns. Originality/value To the authors’ best knowledge, this paper is the first numerical investigation deals with the entropy generation and natural convection of hybrid nanofluid in a two-dimensional cavity, with specific thermal boundary conditions, containing an elliptical block under periodic-variable magnetic field. Different combinations between flow-governing parameters were made to find optimal thermal performance.


2021 ◽  
Vol 6 ◽  
pp. 70-77
Author(s):  
Emilio Martínez Pañeda

Environmentally assisted cracking phenomena are widespread across the transport, defence, energy and construction sectors. However, predicting environmentally assisted fractures is a highly cross-disciplinary endeavour that requires resolving the multiple material-environment interactions taking place. In this manuscript, an overview is given of recent breakthroughs in the modelling of environmentally assisted cracking. The focus is on the opportunities created by two recent developments: phase field and multi-physics modelling. The possibilities enabled by the confluence of phase field methods and electro-chemo-mechanics modelling are discussed in the context of three environmental assisted cracking phenomena of particular engineering interest: hydrogen embrittlement, localised corrosion and corrosion fatigue. Mechanical processes such as deformation and fracture can be coupled with chemical phenomena like local reactions, ionic transport and hydrogen uptake and diffusion. Moreover, these can be combined with the prediction of an evolving interface, such as a growing pit or a crack, as dictated by a phase field variable that evolves based on thermodynamics and local kinetics. Suitable for both microstructural and continuum length scales, this new generation of simulation-based, multi-physics phase field models can open new modelling horizons and enable Virtual Testing in harmful environments. 


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Führer ◽  
Norbert Heuer ◽  
Michael Karkulik

Abstract We analyze backward Euler time stepping schemes for a primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in a natural norm and in the L 2 {L^{2}} norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.


2021 ◽  
pp. 002199832110316
Author(s):  
A Raimondo ◽  
I Urcelay Oca ◽  
C Bisagni

The standard experimental procedures for determining the interlaminar fracture toughness are designed for delamination propagation in unidirectional specimens. However, in aerospace structural components, delamination usually occurs between plies at different orientations resulting in different damage mechanisms which can increase the value of the fracture toughness as the delamination propagates. Generally, numerical analyses employ the value measured at the delamination onset, leading to conservative results since the increase resistance of the delamination is neglected. In this paper, the fracture toughness and the R-curves of carbon/epoxy IM7/8552 are experimentally evaluated in coupons with delamination positioned at 0°/0° and 45°/−45° interfaces using Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) tests. A simplified numerical approach based on the Virtual Crack Closure Technique (VCCT) is developed to simulate variable fracture toughness with the delamination length within a Finite Element code using a predefined field variable. The results of the numerical analyses compared with the experimental data in terms of load-displacement curves demonstrate the effectiveness of the proposed technique in simulating the increase resistance in delamination positioned between plies at 45°/−45° interface.


Author(s):  
Sangamesh Gondegaon ◽  
Hari Kumar Voruganti

Isogeometric analysis (IGA) is a mesh free technique which make use of B-spline basis functions for geometry and field variable representation. Parameterization of B-spline for IGA is the counterpart of meshing as in finite element method (FEM). The objective of parameterization is to find the optimum set of control points for B-spline modelling. The position of control points of a B-spline model has huge effect on IGA results. In this work, the effect of B-spline parameterization on IGA result is presented. One dimensional case of bar with self-weight is solved and compared with exact analytical solution. First fundamental matrix is used as evaluation metric to check the quality of parameterization for 2-D domains. A heat conduction problem of a square domain is presented to study the parameterization effect for 2-D case.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gaurav Narain

Abstract Recently there has been a surge of interest in studying Lorentzian quant urn cosmology using Picard-Lefschetz methods. The present paper aims to explore the Lorentzian path-integral of Gauss-Bonnet gravity in four spacetime dimensions with metric as the field variable. We employ mini-superspace approximation and study the variational problem exploring different boundary conditions. It is seen that for mixed boundary conditions non-trivial effects arise from Gauss-Bonnet sector of gravity leading to additional saddle points for lapse in some case. As an application of this we consider the No-boundary proposal of the Universe with two different settings of boundary conditions) and compute the transition amplitude using Picard-Lefschetz formalism. In first case the transition amplitude is a superposition of a Lorentzian and a Euclidean geometrical configuration leading to interference incorporating non-perturbative effects coming from Gauss-Bonnet sector of gravity. In the second case involving complex initial momentum we note that the transition amplitude is an analogue of Hartle-Hawking wave-function with non-perturbative correction coming from Gauss-Bonnet sector of gravity.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 114
Author(s):  
Manuel Hohmann

We study the variational principle and derivation of the field equations for different classes of teleparallel gravity theories, using both their metric-affine and covariant tetrad formulations. These theories have in common that, in addition to the tetrad or metric, they employ a flat connection as additional field variable, but dthey iffer by the presence of absence of torsion and nonmetricity for this independent connection. Besides the different underlying geometric formulation using a tetrad or metric as fundamental field variable, one has different choices to introduce the conditions of vanishing curvature, torsion, and nonmetricity, either by imposing them a priori and correspondingly restricting the variation of the action when the field equations are derived, or by using Lagrange multipliers. Special care must be taken, since these conditions form non-holonomic constraints. Here, we explicitly show that all of the aforementioned approaches are equivalent, and that the same set of field equations is obtained, independently of the choice of the geometric formulation and variation procedure. We further discuss the consequences arising from the diffeomorphism invariance of the gravitational action, and show how they establish relations between the gravitational field equations.


Sign in / Sign up

Export Citation Format

Share Document