The Cluster Spatio-Temporal Analysis of Field Fluctuations (Staff) Experiment

1997 ◽  
pp. 107-136 ◽  
Author(s):  
N. Cornilleau-Wehrlin ◽  
◽  
P. Chauveau ◽  
S. Louis ◽  
A. Meyer ◽  
...  
2006 ◽  
Vol 24 (3) ◽  
pp. 1057-1075 ◽  
Author(s):  
K. Nykyri ◽  
B. Grison ◽  
P. J. Cargill ◽  
B. Lavraud ◽  
E. Lucek ◽  
...  

Abstract. High-resolution magnetic field data from Cluster Flux Gate Magnetometer (FGM) and the Spatio-Temporal Analysis of Field Fluctuations (STAFF) instruments are used to study turbulent magnetic field fluctuations during the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence whose power correlates with the field-aligned ion plasma flux. The magnetic field wave spectra shows power law behavior with both double and single slopes with break in the spectra usually occurring in the vicinity of the local ion cyclotron frequency. Strong peaks in the wave power close to local ion cyclotron frequency were sometimes observed, with secondary peaks at higher harmonics indicative of resonant processes between protons and the waves. We show that the observed spectral break point may be caused partly by damping of obliquely propagating kinetic Alfvén (KAW) waves and partly by cyclotron damping of ion cyclotron waves.


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1429-1438 ◽  
Author(s):  
M. Maksimovic ◽  
C. C. Harvey ◽  
O. Santolík ◽  
C. Lacombe ◽  
Y. de Conchy ◽  
...  

Abstract. We present observations of "lion roars" obtained in the magnetosheath by the Spectrum Analyser (SA) of the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment aboard Cluster. STAFF-SA calculates, in near real time, the complete auto- and cross-spectral matrix derived from three magnetic and two electric components of the electromagnetic field at 27 frequencies in the range of 8 Hz to 4 kHz. This allows the study of the properties of whistler mode waves and more particularly, the properties of "lion roars", which are intense, short-duration, narrow-banded packets of whistler waves. Their presence is favoured by the magnetic field troughs associated with mirror mode structures. During two short periods of well-defined mirror modes, we study the depth δB/B of the magnetic troughs, and the direction of propagation of the lion roars. During the first period, close to the magnetopause, deep magnetic troughs pass the satellites. Lion roars are then observed to propagate simultaneously in two directions, roughly parallel and anti-parallel to the magnetic field: this probably indicates that during this period, the satellites were within the successive source regions of lion roars. For the second period, far from the magnetopause, the magnetic troughs are less deep. Lion roars are propagating in only one direction, roughly anti-parallel to the magnetic field, suggesting that the source regions are more distant and predominantly on one side of the satellites.Key words. Magnetospheric physics (magnetosheath; plasma waves and instabilities) Radio science (radiowave propagation)


2009 ◽  
Vol 129 (10) ◽  
pp. 1778-1784
Author(s):  
Yasuaki Uehara ◽  
Keita Tanaka ◽  
Yoshinori Uchikawa ◽  
Bong-Soo Kim

2010 ◽  
Vol 17 (4) ◽  
pp. 770-775
Author(s):  
Ren YANG ◽  
Zhi-Yuan REN ◽  
Qian XU ◽  
Mei-Xia WANG

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Iván Vizcaíno ◽  
Enrique Carrera ◽  
Margarita Sanromán-Junquera ◽  
Sergio Muñoz-Romero ◽  
José Luis Rojo-Álvarez ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document