Study on Creep-Fatigue Life Prediction Methods Based on Long-Term Creep- Fatigue Tests for Austenitic Stainless Steel

Author(s):  
Y. Takahashi
1998 ◽  
Vol 120 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Yukio Takahashi

Low-carbon, medium-nitrogen 316 stainless steel is a principal candidate for a main structural material of a demonstration fast breeder reactor plant in Japan. A number of long-term creep tests and creep-fatigue tests have been conducting for two heats of the steel. Two representative creep-fatigue life prediction methods, i.e., time fraction rule and ductility exhaustion method were applied. An introduction of a simple viscous strain term improved the description of stress relaxation behavior and only the conventional (primary plus secondary) creep strain was assumed to contribute to creep damage in the ductility exhaustion method. The present ductility exhaustion approach was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted failure life as large as a factor of 30.


1999 ◽  
Vol 121 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Y. Takahashi

Low-carbon, medium-nitrogen 316 stainless steel is a principal candidate for a main structural material of a demonstration fast breeder reactor plant in Japan. A number of long-term creep tests and creep-fatigue tests have been conducted for four products of this steel. Two representative creep-fatigue life prediction methods, i.e., time fraction rule and ductility exhaustion method were applied. Total stress relaxation behavior was simulated well by an addition of a viscous strain term to the conventional (primary plus secondary) creep strain, but only the letter was assumed to contribute to creep damage in the ductility exhaustion method. The present ductility exhaustion approach was found to have very good accuracy in creep-fatigue life prediction for all materials tested, while the time fraction rule tended to overpredict failure life as large as a factor of 30. Discussion was made on the reason for this notable difference.


Author(s):  
Shengde Zhang ◽  
Yukio Takahashi

This paper presents creep and creep-fatigue deformations and lives of both Ni-based alloys, Alloy 740H and Alloy 617. Creep tests were performed using solid bar specimens at 650°C-800°C, and effect of cyclic loading on creep deformation and rupture was discussed. Strain controlled creep-fatigue tests were also performed under triangular and trapezoidal waveforms at 700°C. Alloy 740H showed stronger creep-fatigue resistance compared to Alloy 617. Creep-fatigue lives in trapezoidal waveform were smaller than those in the pure fatigue test and the creep-fatigue lives decreased as the hold time increased. Applicability of four representative creep-fatigue life prediction methods was discussed.


1984 ◽  
Vol 83 (3) ◽  
pp. 267-278 ◽  
Author(s):  
G. Cailletaud ◽  
D. Nouailhas ◽  
J. Grattier ◽  
C. Levaillant ◽  
M. Mottot ◽  
...  

2016 ◽  
Vol 853 ◽  
pp. 67-71
Author(s):  
Yu Han ◽  
Ke Sheng Wang

With the purpose of long-cycle safe operation of cold stretched austenitic stainless steel pressure vessels so as to achieve unification of economy and safety, prediction of fatigue life of S31603 austenitic stainless steel at high temperature is systematic studied. Based on the Hull-Rimmer cavity theory, a fatigue life prediction model applicable to stress controlled is developed. Fatigue test is carried out on the solution annealed and cold stretched S31603 steel at high temperature and corresponding test data is obtained. The fatigue life of the solution annealed and cold stretched materials is predicted by the model and the prediction results are in good agreement with the experimental results. On this basis, the life prediction model coupled with the strain level of cold stretching is further established. Compared with the test data, the prediction results is found to be very satisfactory with an error band less than ±1.5 times. The fatigue life prediction model suitable for stress control at high temperature is simple in form and has a clear and obvious physical significance which points out a new way to predict fatigue life of metal materials.


Sign in / Sign up

Export Citation Format

Share Document