fatigue test
Recently Published Documents


TOTAL DOCUMENTS

1596
(FIVE YEARS 230)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Cannan Yi ◽  
Fan Tang ◽  
Kai-Way Li ◽  
Hong Hu ◽  
Huali Zuo ◽  
...  

Manual demolition tasks are heavy, physically demanding tasks that could cause muscle fatigue accumulation and lead to work-related musculoskeletal disorders (WMSDs). Fatigue and recovery models of muscles are essential in understanding the accumulation and the reduction in muscle fatigue for forceful exertion tasks. This study aims to explore the onset of muscle fatigue under different work/rest arrangements during manual demolition tasks and the offset of fatigue over time after the tasks were performed. An experiment, including a muscle fatigue test and a muscle fatigue recovery test, was performed. Seventeen male adults without experience in demolition hammer operation were recruited as human participants. Two demolition hammers (large and small) were adopted. The push force was either 20 or 40 N. The posture mimicked that of a demolition task on a wall. In the muscle fatigue test, the muscle strength (MS) before and after the demolition task, maximum endurance time (MET), and the Borg category-ratio-10 (CR-10) ratings of perceived exertion after the demolition task were measured. In the muscle fatigue recovery test, MS and CR-10 at times 1, 2, 3, 4, 5, and 6 min were recorded. Statistical analyses were performed to explore the influence of push force and the weight of the tool on MS, MET, and CR-10. Both muscle fatigue models and muscle fatigue recovery models were established and validated. The results showed that push force affected MET significantly (p < 0.05). The weight of the tool was significant (p < 0.05) only on the CR-10 rating after the first pull. During the muscle fatigue recovery test, the MS increase and the CR-10 decrease were both significant (p < 0.05) after one or more breaks. Models of MET and MS prediction were established to assess muscle fatigue recovery, respectively. The absolute (AD) and relative (RD) deviations of the MET model were 1.83 (±1.94) min and 34.80 (±31.48)%, respectively. The AD and RD of the MS model were 1.39 (±0.81) N and 1.9 (±1.2)%, respectively. These models are capable of predicting the progress and recovery of muscle fatigue, respectively, and may be adopted in work/rest arrangements for novice workers performing demolition tasks.


2022 ◽  
Vol 3 (1) ◽  
pp. 88-102
Author(s):  
Marc Quiertant ◽  
Claude Boulay ◽  
Laurent Siegert ◽  
Christian Tourneur

This article investigates the potential detrimental effects of cyclic load during the installation of externally bonded (EB) carbon fiber-reinforced polymer (CFRP) on a damaged reinforced concrete (RC) structure. Four RC specimens were tested in three point bending to study the consequences of crack cyclic opening-closure during epoxy-curing period. A first RC specimen (without bonded CFRP) was loaded monotonically up to failure to serve as undamaged control sample. The three other specimens were pre-cracked before being subjected to a fatigue loading procedure to simulate service condition of a damaged RC structure. Two of the three pre-cracked specimens were strengthened by EB CFRP. One specimen was repaired before the fatigue test while the other one was repaired during the fatigue test. Finally, remaining capacities of all three pre-cracked specimens were measured through monotonic bending tests until failure. It was found that, although bonding of CFRP reinforcement during cyclic load can induce some interesting features with regard to serviceability, cyclic crack opening and closing alters the cure process of epoxy located below the initial crack and decreases the effectiveness of the strengthening at ultimate state. Extended experimental studies are then needed to assess reliable safety factor for the design of repairing operations in which the bridge has to be maintained in service during CFRP installation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yifei Pei ◽  
Hongqiao Zhu ◽  
Yu Xiao ◽  
Jian Zhou ◽  
Zaiping Jing

Objective: To examine the feasibility, integrity, efficacy, and safety of endovascular repair of the aortic arch pathologies with the mini-cross prefenestration (MCPF) on stent grafts.Methods: First, to prove the feasibility of the MCPF, an in-vitro prefenestration experiment was conducted. Second, to examine the integrity of the MCPF stent grafts, a fatigue test was conducted. Then, the membranes and metal structures of stent grafts were examined by light microscopy and scanning electron microscopy (SEM). Third, a clinical experiment was conducted to investigate the efficacy and safety of this novel technique (ClinicalTrials.gov Identifier: NCT04544579).Results: All the 12 branch stents were successfully implanted and flared in vitro. After the fatigue test stimulating a 5-year cardiac cycle, no obvious disintegration or fracture was found in light microscopy or SEM. From December 2017 to February 2020, 26 patients with left subclavian arteries and/or left common carotid arteries involved received the novel technique. The endovascular repair with the MCPF was successfully performed on all the 26 (100%) patients. Eighteen (69.2%) patients underwent the reconstruction of the left subclavian artery (LSCA) only. The fenestrations of both the LSCA and left common carotid artery (LCCA) were conducted in 8 (30.8%) patients. Median operative time was 120 [interquartile range (IQR), 95–137.5] min and median revascularization time of the LSCA and LCCA was 30.5 (IQR, 22.8–42.0) s and 20.0 (IQR, 18.0–32.0) s separately. During the median follow-up duration of 38.9 (range, 18.8–44.2) months, one case needed an open surgery because of retrograde type A aortic dissection 3 months after implantation and no other complications or mortality occurred. The maximum aortic diameters were significantly decreased in patients with thoracic aortic dissection and thoracic aortic aneurysm (p &lt; 0.05).Conclusion: The existing evidence demonstrated the safety, rapid branch artery revascularization, and positive aortic remodeling of the novel technique. Long-term observation is warranted to prove the durability.


2022 ◽  
Author(s):  
Trevor Zook ◽  
Darryl Toni ◽  
Bruce Barr ◽  
Dave Lent
Keyword(s):  

2022 ◽  
Vol 81 ◽  
pp. 103119
Author(s):  
Jorge Mendoza ◽  
Per J. Haagensen ◽  
Jochen Köhler

2022 ◽  
Vol 355 ◽  
pp. 01019
Author(s):  
Sibo Gao ◽  
Wei Yang ◽  
Jinlong Wang ◽  
Yang Yu ◽  
Qi Ding ◽  
...  

Surface scratch has significant influence on the fatigue behavior of Ti-5Al-2Zr-4Mo-4Cr. In this paper, fatigue test with three different surface roughness are conducted, test results are recorded, including test data and fracture characteristics. The distribution of test data is analyzed and the fracture characteristics are discussed according to the change of surface roughness. Study of fatigue behavior of Ti-5Al-2Zr-4Mo-4Cr with surface roughness is significant intheoretical and engineering fatigue study.


2021 ◽  
Author(s):  
Moritz Braun ◽  
Xiru Wang

The aim of this paper is to investigate the effects of weld toe grinding and weld profiling on the fatigue strength of welded joints and the main influencing factors. Thus, experimental test results of welds improved by different grinding techniques are reviewed. In total, 445 small- and full-scale fatigue test results of various weld types and steel grades with yield strengths up to 1100 MPa are analysed. The obtained improvements of two FAT classes correspond well with current guidelines; however, a new S–N curve slope of m = 4 is recommended—in line with proposals for other weld geometry improvement techniques.


2021 ◽  
Vol 147 (4) ◽  
pp. 04021059
Author(s):  
Diego Ramirez Cardona ◽  
Simon Pouget ◽  
Hervé Di Benedetto ◽  
François Olard

Author(s):  
Anusha T M ◽  
◽  
Akhilesh B R ◽  
Dr H S Jagadeesh ◽  
◽  
...  

Stone mastic asphalt (SMA) is a gap graded mix which is categorised by more quantity of coarse aggregate, high asphalt content and fibre. Due to stone on stone contact and presences of high filler content, it acts as a stiff matrix and reduces the rutting due to heavy traffic load. This research presents a study on fatigue performance RAP replaced SMA mixes using VG 30 as binder along with elastomer as a modifier and results were compared with conventional SMA mix. The specimens prepared were tested using several laboratory test procedures: Marshall mix design, indirect tensile strength, moisture susceptibility, drain down test and Repeated load fatigue test. Test results showed Marshall Properties of the RAP mix improved up to a RAP content of 30% without elastomer modifier and RAP content up to 60% with elastomeric modifier. From the moisture susceptibility test results, the elastomeric modified SMA mix showed high resistance to moisture damage when compared to conventional mix and 30% RAP replacement mix. Repeated load fatigue test was conducted for different stress load and temperature and results showed elastomeric modified SMA mix offered high resistance to deformation across all stress level and temperature when compared to conventional and optimum RAP mix. As a fatigue loading increased resulted in decrease of number of fatigue cycles and increased in the initial tensile strain of the mix. As the percentage of RAP addition increased the initial tensile strain decreased.


Sign in / Sign up

Export Citation Format

Share Document