Lessons Learned from the US Army Net Zero Energy Program for NATO Installations

Author(s):  
Samuel Booth ◽  
Paul Volkman
Author(s):  
Kate Anderson ◽  
Samuel Booth ◽  
Kari Burman ◽  
Michael Callahan

Net zero energy is a concept of energy self-sufficiency based on minimized demand and use of local renewable energy resources. A net zero energy military installation is defined as: “A military installation that produces as much energy on-site from renewable energy generation or through the on-site use of renewable fuels, as it consumes in its buildings, facilities, and fleet vehicles.” [1] The National Renewable Energy Laboratory (NREL) developed a comprehensive, first-of-its-kind strategy for evaluating a military installation’s potential to achieve net zero energy status, including an assessment of baseline energy use, energy use reduction opportunities from efficiency or behavior changes, renewable energy generation opportunities, electrical systems analysis of renewable interconnection, microgrid potential, and transportation energy savings. This paper describes NREL’s net zero energy assessment strategy and provides a planning guide for other organizations interested in evaluating net zero potential. We also present case studies and describe lessons learned from NREL’s net zero energy assessments at seven installations, including the importance of enforcing and funding mandates, providing leadership support, collecting accurate data, and selecting appropriate technologies. Finally, we evaluate whether the net zero concept is a useful framework for analyzing an energy strategy and a reasonable goal.


2016 ◽  
Vol 133 ◽  
pp. 688-710 ◽  
Author(s):  
Fabrizio Ascione ◽  
Nicola Bianco ◽  
Olaf Böttcher ◽  
Robert Kaltenbrunner ◽  
Giuseppe Peter Vanoli

2013 ◽  
Vol 689 ◽  
pp. 184-187 ◽  
Author(s):  
Salvatore Carlucci ◽  
Paolo Zangheri ◽  
Lorenzo Pagliano

The recast of the European Directive on Energy Performance of Buildings introduces the concept of nearly Zero Energy Building. To obtain a practical interpretation of this building concept, it is necessary to clarify two main issues: (i) how it is possible to select a reliable and agreed upon concept of “zero energy”; (ii) which technological features might be used to reach that target. In order to test the design of a nearly Zero Energy Building in the South of Europe, we present as case study an Italian Passivhaus located in the Po Valley that has been monitored for 18 months and analyzed through dynamic simulations of calibrated models. In this paper we present a selection of the result of the monitoring and simulation phases regarding the contribution (in terms of reduction of the indoor operative temperatures) of Earth-to-Air Heat Exchangers and natural ventilation strategies to meet different summer thermal comfort targets and consequently to avoid the installation of an active cooling system.


Author(s):  
Mona Azarbayjani ◽  
Valentina Cecchi ◽  
Brett Tempest

This paper reviews the development process of a net-zero-energy modular house, called UrbanEden, which was the UNC-Charlotte entry to the 2013 US Department of Energy Solar Decathlon competition. It reports the collaboration of students and faculty from various colleges and schools at UNC-Charlotte working towards delivering a net-zero energy house for the competition held in October in Irvine California. The study presents the participation of students involved in various phases of schematic design, design development and construction. It also identifies the composition and organization of students through the two-year progress and how it evolved throughout the process. The paper also reviews the curriculum integration in school of Architecture with Engineering. The lessons learned from the process will be discussed.


2014 ◽  
Vol 5 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Cs. Szász

The paper presents an intelligent building (IB) development strategy emphasizing the locally available non-polluting renewable energy resources utilization. Considering the immense complexity of the topic, the implementation strategy of the main energy-flow processes is unfolded, using the net zero-energy building concept (NZEB). Noticeably, in the first research steps the mathematical background of the considered NZEB strategy has been developed and presented. Then careful LabView software-based simulations prove that the adopted strategy is feasible for implementation. The result of the above mentioned research efforts is a set of powerful and versatile software toolkits well suitable to model and simulate complex heating, ventilation and air-conditioning processes and to perform energy balance performance evaluations. Besides the elaborated mathematical models, concrete software implementation examples and measurement data also is provided in the paper. Finally, the proposed original models offer a feasible solution for future developments and research in NZEB applications modelling and simulation purposes.


2009 ◽  
Author(s):  
Carl A. Feickert ◽  
Thomas J. Hartranft ◽  
Franklin H. Holcomb ◽  
John L. Vavrin ◽  
Alexander M. Zhivov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document